Giải bài tập SGK Bài 9 Chương 1 Đại số 9

căn bậc 3

Giải bài tập 67 trang 36 SGK đại số 9

Hãy tìm:
$\sqrt[3]{512}$;      $\sqrt[3]{-729}$;     $\sqrt[3]{0,064}$;       $\sqrt[3]{-0,216}$;     $\sqrt[3]{-0,008}$


Bài giải:
$\sqrt[3]{512}$ = $\sqrt[3]{2^9}$ = $\sqrt[3]{(2^3)^3}$ = $2^3$ = 8
$\sqrt[3]{-729}$ = -$\sqrt[3]{729}$ = -$\sqrt[3]{3^6}$ = -$\sqrt[3]{(3^2)^3}$ = -$3^2) = -9
$\sqrt[3]{0,064}$ = $\sqrt[3]{\frac{64}{1000}}$ = $\sqrt[3]{\frac{4^3}{10^3}}$ = $\frac{4}{10}$ = $\frac{2}{5}$
$\sqrt[3]{-0,216}$ = $\sqrt[3]{-\frac{216}{1000}}$ = -$\sqrt[3]{\frac{216}{1000}}$ = -$\frac{6}{10}$ = -$\frac{3}{5}$

$\sqrt[3]{-0,008}$ = -$\sqrt[3]{\frac{8}{1000}}$ = -$\frac{2}{10}$ = -$\frac{1}{5}$

Giải bài tập 68 trang 36 SGK đại số 9

Tính:
a) $\sqrt[3]{27}$ – $\sqrt[3]{-8}$ – $\sqrt[3]{125}$      b) $\frac{\sqrt[3]{135}}{\sqrt[3]{5}}$.$\sqrt[3]{54}$.$\sqrt[3]{4}$
Bài giải:
a) $\sqrt[3]{27}$ – $\sqrt[3]{-8}$ – $\sqrt[3]{125}$ = $\sqrt[3]{3^3}$ – $\sqrt[3]{(-2)^3}$ – $\sqrt[3]{5^3}$ = 3 + 2 – 5 = 0
b) $\frac{\sqrt[3]{135}}{\sqrt[3]{5}}$.$\sqrt[3]{54}$.$\sqrt[3]{4}$ = $\sqrt[3]{\frac{135}{5}}$ – $\sqrt[3]{54 . 4}$ = $\sqrt[3]{27}$ – $\sqrt[3]{216}$

= $\sqrt[3]{3^3}$ – $\sqrt[3]{6^3}$ = 3 – 6 = -3

Giải bài tập 69 trang 36 SGK đại số 9

So sánh:
a) 5 và $\sqrt[3]{123}$               b) 5$\sqrt[3]{6}$ và 6$\sqrt[3]{5}$
Bài giải:
a) Ta có: 5 = $\sqrt[3]{125}$
Vì 125 > 123 nên $\sqrt[3]{125}$ > $\sqrt[3]{123}$
Do đó 5 > $\sqrt[3]{123}$
b) 5$\sqrt[3]{6}$ = 5$\sqrt[3]{5^3 . 6}$ = $\sqrt[3]{125 . 6}$ = $\sqrt[3]{750}$
6$\sqrt[3]{5}$ = 6$\sqrt[3]{6^3 . 5}$ = $\sqrt[3]{216 . 5}$ = $\sqrt[3]{1080}$
Vì 750 < 1080 nên $\sqrt[3]{750}$ < $\sqrt[3]{1080}$
Do đó 5$\sqrt[3]{6}$ < 6$\sqrt[3]{5}$

Leave a Reply