Bài 4: Đường trung bình của tam giác, của hình thang – Hình học 8

Tóm tắt lý thuyết

Kiến thức cần nhớ:

I. Đường trung bình của tam giác:

1.Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

Bài 4: Đường trung bình của tam giác, của hình thang - Hình học 8

 Ở hình trên ta gọi DE là đường trung bình cùa tam giác ABC.

2.Các định lí:

  • Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.
  • Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

II. Đường trung bình của hình thang:

1.Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm của hai cạnh bên của hình thang.

Bài 4: Đường trung bình của tam giác, của hình thang - Hình học 8

 Ở hình trên ta gọi EF là đường trung bình của hình thang ABCD.

2.Các định lí:

  • Đường thẳng đi qua trung điểm một cạnh bên của hình thang và sông sông với hai đáy thì đi qua trung điểm cânhj bên thứ hai.
  • Đường trung bình của hình thang thì song song với hai đáy và có độ dài bằng một nửa tổng hai đáy.

Bài tập minh họa

Bài 1: Cho tam giác ABC có D,E,F lần lượt là trung điểm của các danh AB,AC,BC. gọi G là trung điểm của AF. Chứng minh D,G,E thẳng hàng và G là trung điểm DE.

Hướng dẫn:

Bài 4: Đường trung bình của tam giác, của hình thang - Hình học 8

Chứng minh D, G, E thẳng hàng

Xét tam giác ABF có:

D là trung điểm AB

G là trung điểm AF

⇒DG là đường trung bình của tam giác ABF

\( \Rightarrow DG\parallel BF\) và \(DG = \frac{1}{2}BF\)

Xét tam giác AFC có:

G là trung điểm AF

E là trung điểm AC

⇒GE là đường trung bình của tam giác AFC

\( \Rightarrow GE\parallel FC\) và \(GE = \frac{1}{2}FC\)

Ta có: \( DG\parallel BF\) và \( GE\parallel FC\)  ⇒D, G, E thẳng hàng (tiên đề Euclid)

Chứng minh G là trung điểm của DE

Ta có: \(DG = \frac{1}{2}BF\) và \(GE = \frac{1}{2}FC\)

Mà BF=CF (F là trung điểm BC)

⇒DG=GE

Mà D,E,G thẳng hàng

⇒G là trung điểm của DE

Bài 2: Cho tam giác ABC có BD và CE là các đường trung tuyến cắt nhau tại G, gọi I, K lần lượt theo hứ tự là trung điểm của GB và GC. Chứng minh rằng \(DE\parallel IK\) và DE=IK

Hướng dẫn:

Bài 4: Đường trung bình của tam giác, của hình thang - Hình học 8

Xét tam giác ABC có:

E là trung điểm AB

D là trung điểm AC

⇒DE là đường trung bình của tam giác ABC.

\( \Rightarrow DE\parallel BC\) và \(DE = \frac{1}{2}BC\)

Tương tự với tam giác GBC ta cũng có:

I là trung điểm GB

K là trung điểm GC

⇒IK  là đường trung bình của tam giác GBC.

\( \Rightarrow IK\parallel BC\) và \(IK = \frac{1}{2}BC\)

\( \Rightarrow IK\parallel DE\) (cùng song song với BC ) và IK=DE (cùng bằng một nửa BC)

Bài 3: Cho hình thang ABCD có AB, CD là hai đáy va AB < CD. Gọi E và F lần lượt là trung điểm của BD và AC. Chứng minh rằng: \(EF = \frac{{CD – AB}}{2}\)

Hướng dẫn:

Bài 4: Đường trung bình của tam giác, của hình thang - Hình học 8

Gọi G và H lần lượt là trung điểm của AD và BC.

Xét tam giác ADC có:

G là trung điểm AD

F là trung điểm AC

⇒GF là đường trung bình của tam giác ADC

\( \Rightarrow GF\parallel DC\) và \(GF = \frac{1}{2}CD\)

Chứng minh tương tự với tam giác BCD ta cũng có: EH là đường trung bình của tam giác BCD

\( \Rightarrow EH\parallel CD\) và \(EH = \frac{1}{2}CD\)

Ta có \(GF\parallel DC\) và \(EH\parallel CD\) ⇒E,F,G,H thẳng hàng.

Xét tam giác ABD dễ thấy GE là đường trung bình của tam giác ABD nên \(GE = \frac{1}{2}AB\)

Tương tự với tam giác ABC ta cũng chứng minh được \(FH = \frac{1}{2}AB\)

Mặt khác ta có GH là đường trung bình của hình thang ABCD nên \(GH = \frac{{AB + CD}}{2}\)

Ta có

\(\begin{array}{l} GH = GE + EF + FH\\ \,\,\,\,\,\,\,\, = \frac{1}{2}AB + EF + \frac{1}{2}AB\\ \,\,\,\,\,\,\,\,\,= AB + EF = \frac{{AB + CD}}{2} \end{array}\)

\( \Rightarrow EF = \frac{{CD – AB}}{2}\) (điều phải chứng minh)

Leave a Reply