Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46

Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46

*************

Bài tập 6 trang 45 SGK Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số:
\(f(x) = -x^3+3x^2+9x+2\)
b) Giải bất phương trình f’(x-1)>0
c) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x0, biết rằng f’’(x0) = -6.

Hướng dẫn giải chi tiết bài 6

Câu a:

Xét hàm số \(f(x)=-x^3+3x^2+9x+2\)
1) Tập xác định: D=R.
2) Sự biến thiên:

  • Chiều biến thiên: \(f'(x)=-3x^2+6x+9.\)

\(f'(x)=0\Leftrightarrow -3x^2+6x+9=0\Leftrightarrow \bigg \lbrack \begin{matrix} x=-1\\ x=3 \end{matrix}\)
Xét dấu f'(x):
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
Vậy hàm số đồng biến trên khoảng (-1;3), nghịch biến trên khoảng \((-\infty ;-1)\) và \((3;+\infty )\).

  • Cực trị: Hàm số đạt cực đại tại x = 3 và giá trị cực đại y = y(3) = 29, đạt cực tiểu tại x = – 1 và giá trị cực tiểu yCT = y(-1) = -3.
  • Giới hạn:

\(\lim_{x\rightarrow -\infty }y=\lim_{x\rightarrow -\infty }(-x^3+3x^2+9x+2)=+\infty,\)
\(\lim_{x\rightarrow +\infty }y=\lim_{x\rightarrow +\infty }(-x^3+3x^2+9x+2)=-\infty.\)

  • Bảng biến thiên:

Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
3) Đồ thị:
Ta có: y”=-6x+6, y”=0⇔ x=1. Vậy đồ thị hàm số nhận điểm (1;13) làm tâm đối xứng.
Đồ thị hàm số cắt Ox tại điểm (0;2).
Với \(x=-2\Rightarrow y=4\)
\(x=4\Rightarrow y=22\)
\(x=-3\Rightarrow y=29\)
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
Câu b:
Ta có: \(f'(x)=-3x^2+6x+9\)
\(\Rightarrow f ‘(x-1)=-3(x-1)^2+6(x-1)+9\)
\(=-3(x^2-2x+1)+6x-6+9\)
\(=-3x^2+6x-3+6x-6+9\)
\(=-3x^2+12x\)
Do đó: \(f'(x-1)> 0\Leftrightarrow -3x^2+12x>0\Leftrightarrow 0<x<4\).
Câu c:
Ta có: \(f”(x_0)=-6x_0+6\)
\(\Rightarrow f”(x_0)=-6\Leftrightarrow -6x_0+6=-6\Leftrightarrow x_0=2\)
\(\Rightarrow f(x_0)=24\) và \(f'(x_0)=f'(2)=9\)
Vậy tiếp tuyến của đồ thị tại điểm x0 theo yêu cầu bài toán là:
\(y=9(x-2)+24\Leftrightarrow y=9x+6\).

 

Bài tập 7 trang 45 SGK Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: y = x3 + 3x2 + 1
b) Dựa vào đồ thị (C), biện luận số nghiệm của phương trình sau theo m: \(x^3+3x^2+1=\frac{m}{2}\).
c) Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C).

Hướng dẫn giải chi tiết bài 7

Câu a:

y = x3 + 3x2 + 1
1) Tập xác định: D = R
2) Sự biến thiên:

  • Chiều biến thiên: y’= 3×2 + 6x, y’=0 ⇔ 3×2 + 6x =0 \(\Leftrightarrow \bigg \lbrack \begin{matrix} x=-2\\ x=0 \end{matrix}\)

Xét dấu y’:
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
Vậy hàm số đồng biến trên các khoảng \((-\infty ;-2)\) và \((0;+\infty )\), nghịch biến trên khoảng (-2;0).

  • Cực trị: Hàm số đạt cực đại tại x = 0, giá trị cực đại y = y(0) = 1; đạt cực tiểu tại x=-2, giá trị cực tiểu yCT =y(-2) = 5.
  • Giới hạn:

\(\lim_{x\rightarrow -\infty }y= \lim_{x\rightarrow -\infty }(x^3+3x^2+1)=-\infty\)
\(\lim_{x\rightarrow +\infty }y= \lim_{x\rightarrow +\infty }(x^3+3x^2+1)=+\infty\)

  • Bảng biến thiên:

Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
3) Đồ thị:
Ta có: y”=6x+6, y”=0 ⇔ x=-1. Vậy đồ thị hàm số nhận điểm (-1;3) làm tâm đối xứng.
Đồ thị cắt Oy tại điểm (0;1).
Với x = -3 ⇒ y = 1
Với x = 1 ⇒ y = 5.
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
Câu b:
Số nghiệm của phương trình \(x^3+3x^2+1=\frac{m}{2} (*)\) là số giao điểm của đồ thị (C) và đường thẳng \(y=\frac{m}{2}\).
Dựa vào đồ thị trên ta có:
+ Nếu \(\Bigg \lbrack \begin{matrix} \frac{m}{2}> 5\\ \\ \frac{m}{2}< 1 \end{matrix}\Leftrightarrow \bigg \lbrack \begin{matrix} m> 10\\ m< 2 \end{matrix}\) thì (*) có một nghiệm duy nhất.
+ Nếu \(\Bigg \lbrack \begin{matrix} \frac{m}{2}= 5\\ \\ \frac{m}{2}= 1 \end{matrix}\Leftrightarrow \bigg \lbrack \begin{matrix} m=10\\ m= 2 \end{matrix}\) thì (*) có hai nghiệm phân biệt.
+ Nếu \(1< \frac{m}{2}< 5\Leftrightarrow 2< m< 10\)  thì (*) có ba nghiệm phân biệt.
Câu c:
Trong mặt phẳng, phương trình đường thẳng đi qua hai điểm A và B có tọa độ cho trước là:
\(\frac{{y – {y_B}}}{{{y_A} – {y_B}}} = \frac{{x – {x_B}}}{{{x_A} – {x_B}}}.\)
Từ câu a ta có điểm cực đại của đồ thị là (-2;5), điểm cực tiểu là (0;1). Vậy phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là:
\(\frac{x+2}{2}=\frac{y-5}{1-5}\Leftrightarrow -2x-4=y\Leftrightarrow y=-2x+1\).

 

Bài tập 8 trang 46 SGK Giải tích 12

Cho hàm số f(x)= x3 – 3mx2 + 3(2m-1)x + 1 (m là tham số).
a) Xác định m để hàm số đồng biến trên một tập xác định.
b) Với giá trị nào của tham số m, hàm số có một cực đại và một cực tiểu.
c) Xác định m để f’’(x)>6x.

Hướng dẫn giải chi tiết bài 8

Câu a:

f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D=R.
f'(x)= 3x2 -6mx + 3(2m-1)
\(\Delta ‘\)= 9m2 – 9(2x – 1) = 9m2 – 18m + 9
f(x) đồng biến trên tập xác định khi và chỉ khi: f'(x) ≥ 0, ∀x ∈ R.
Điều này xảy ra khi: \(\Delta ‘\leq 0\) ⇔  9m2 – 18m + 9 \(\leq 0\)
⇔ m2 – 2m + 1 ⇔ (m-1)2 ≤ 0 ⇔ m =1.
Vậy f(x) đồng biến trên tập xác định của nó khi và chỉ khi m = 1.
Câu b:
Hàm số có một cực đại và một cực tiểu khi và chỉ khi phương trình y’=0 có hai nghiệm phân biệt, y’ sẽ đổi dấu khi đi qua hai nghiệm đó.
Điều này xảy ra khi:\(\Delta’ >0\Leftrightarrow 9m^2-18m+9>0\Leftrightarrow (m-1)^2>0 \Leftrightarrow m\neq 1\).
Câu c:
Ta có: f'(x)= 3×2 -6mx + 3(2m-1).
Suy ra: f’’(x) = 6x – 6m
Do đó f”(x) > 6x ⇔ 6x – 6m > 6x ⇔ -6m > 0 ⇔ m < 0,

 

Bài tập 9 trang 46 SGK Giải tích 12

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
\(f(x)=\frac{1}{2}x^4-3x^2+\frac{3}{2}\)
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ là nghiệm của phương trình f’’(x) = 0.
c) Biện luận theo tham số m số nghiệm của phương trình: x– 6x+ 3 = m.

Hướng dẫn giải chi tiết bài 9

Câu a:

\(f(x)=\frac{1}{2}x^4-3x^2+\frac{3}{2}\)
1) Tập xác định: D=R.
2) Sự biến thiên:

  • Chiều biến thiên: \(f'(x)=2x^3-6x.\)

\(f'(x)=0 \Leftrightarrow 2x^3-6x=0\Leftrightarrow \Bigg \lbrack \begin{matrix} x=-\sqrt{3}\\ x=0\\ x=\sqrt{3} \end{matrix}\)
Xét dấu y’:
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
Vậy hàm số đồng biến trên các khoảng \((-\sqrt{3};0)\) và \((\sqrt{3};+\infty )\), nghịch biến trên các khoảng \((-\infty;-\sqrt{3})\) và \((0;\sqrt{3})\).

  • Cực trị:

Hàm số đạt cực đại tại x = 0, giá trị cực đại \(y_{CD} = y(0)=\frac{3}{2}\), đạt cực tiểu tại \(x=-\sqrt{3}\) và \(x=\sqrt{3}\), giá trị cực tiểu \(y_{CT}=y(-\sqrt{3})=y(\sqrt{3})=-3\).

  • Giới hạn:

\(\lim_{x\rightarrow -\infty }y=\lim_{x\rightarrow -\infty }\left ( \frac{1}{2}x^4-3x^2+\frac{3}{2} \right )= +\infty\)
\(\lim_{x\rightarrow +\infty }y=\lim_{x\rightarrow +\infty }\left ( \frac{1}{2}x^4-3x^2+\frac{3}{2} \right )= +\infty\)
Bảng biến thiên:
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
3) Đồ thị
Đồ thị hàm số nhận trục Oy là trục đối xứng.
Đồ thị cắt Oy tại điểm \(\left ( 0;\frac{3}{2} \right )\)
Ta có:
x = 1 ⇒ y = -1
x = -2 ⇒ y = -5/2
x = 2 ⇒ y = -5/2
x = -1 ⇒ y = -1
Giải bài tập SGK ôn chương 1 Giải tích 12 từ bài 6 đến bài 9 trang 45, 46
Câu b:
Ta có: \(f”(x)=6x^2-6\)
\(f”(x)=0\Leftrightarrow 6x^2-6=0\Leftrightarrow \bigg \lbrack \begin{matrix} x=-1\\ x=1 \end{matrix}\)

  • Với  x = -1 ⇒ f(-1) = -1, f'(-1) = 4

Phương trình tiếp tuyến của (C) tại (-1; -1) là:
y = 4(x+1) – 1 ⇔ y = 4x + 3.

  • Với x = 1 ⇒ f(1) = -1, f'(1) = -4

Vậy phương trình tiếp tuyến của (C) tại (1; -1) là:
y = -4(x-1) -1 ⇔ y= -4x + 3.
Câu c:
Ta có:
\(x^4-6x^2+3=m\Leftrightarrow \frac{1}{2}x^4-3x^2+\frac{3}{2}=\frac{m}{2}\)    (*)
Số nghiệm của (*) là số giao điểm của (C) và đường thẳng \(y=\frac{m}{2}\)
Từ đồ thì (C) ta có:
+ Nếu \(\frac{m}{2}<-3\Leftrightarrow m< -6\) thì (*) vô nghiệm.
+ Nếu \(\bigg \lbrack \begin{matrix} \frac{m}{2}=-3\\ \\ \frac{m}{2}>\frac{3}{2} \end{matrix}\Leftrightarrow \bigg \lbrack \begin{matrix} m=-6\\ m>3 \end{matrix}\) thì (*) có hai nghiệm phân biệt.
+ Nếu \(\frac{m}{2}=\frac{3}{2}\Leftrightarrow m=3\)  thì (*) có ba nghiệm phân biệt.
+ Nếu \(-3< \frac{m}{2}< \frac{3}{2}\Leftrightarrow -6<m<3\)  thì (*) có bốn nghiệm phân biệt.

Leave a Reply