Giải bài tập SGK Bài 4,5,6 – Thể tích của khối đa diện – HH12

Bài tập 4 trang 25 SGK Hình học 12

Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S. Chứng minh rằng:
Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
 

Hướng dẫn giải chi tiết bài 4

Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Gọi H, H’ lần lượt là hình chiếu của A, A’ lên mặt phẳng (SBC). Đặt \(\alpha  = \widehat {BSC};\,\beta  = \widehat {\left( {SA,mp\left( {SBC} \right)} \right)}\).
Ta có:
\(\frac{{{V_{S.A’B’C’}}}}{{{V_{S.ABC}}}} = \frac{{\frac{1}{3}{S_{SB’C’}}.A’H’}}{{\frac{1}{3}{S_{SBC}}.AH}} = \frac{{\frac{1}{2}SC’.SB’.\sin \alpha .SA.\sin \beta }}{{\frac{1}{2}.SB.SC.\sin \alpha .\sin \beta }} = \frac{{SA’.SB’.SC’}}{{SA.SB.SC}}.\)
Hình vẽ này chỉ cho một trường hợp H, H’ nằm trong miền trong tam giác SBC. Các trường hợp khác được vẽ hình và chứng minh tương tự.

Bài tập 5 trang 26 SGK Hình học 12

Cho tam giác ABC vuông cân ở A và AB = a. Trên đường thẳng qua C và vuông góc với mặt phẳng (ABC) lấy điểm D sao cho CD = a. Mặt phẳng qua C vuông góc với SD, cắt BD tại F và cắt AD tại E. Tình thể tích khối tứ diện CDEF theo a.

Hướng dẫn giải chi tiết bài 5

 
Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12 => BA ⊥ (ADC) => BA ⊥ CE
Mặt khác BD ⊥ (CEF) => BD ⊥ CE.
Từ đó suy ra
CE ⊥ (ABD) => CE ⊥ EF, CE ⊥ AD.
Vì tam giác ACD vuông cân, AC= CD= a nên Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Ta có Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Để ý rằng  nên Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Từ đó suy ra
Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12.
Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12.
Từ đó suy ra Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Vậy Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12

Bài tập 6 trang 26 SGK Hình học 12

Cho hai đường thẳng chéo nhau d và d’. Đoạn thằng AB có độ dài a trượt trên d, đoạn thẳng CD có độ dài B trượt trên d’. Chứng minh rằng khối tứ diện ABCD có thể tích không đổi.

Hướng dẫn giải chi tiết bài 6

Giải bài tập SGK Bài 4,5,6 - Thể tích của khối đa diện - HH12
Gọi khoảng cách giữa 2 đường thẳng chéo nhau d, d’ và góc của d và d’ là \(\varphi .\)
Trong mặt phẳng (ABC) dựng hình bình hành CBAA’.
Ta có AA’//BC nên \({V_{ABCD}} = {V_{A’BCD}}\)
Gọi MN là đoạn vuông góc chung của AB và CD \(\left( {M \in AB,\,\,N \in CD} \right)\)
Vì BM//CA’ nên \({V_{BA’CD}} = {V_{MA’CD}}\)
Ta có \(MN \bot AB\) nên \(MN \bot CA’,\) hơn nữa \(MN \bot CD.\)
Do đó \(MN \bot (CDA’)\)
Chú ý rằng: \(\widehat {\left( {AB,CD} \right)} = \widehat {\left( {AC’,CD} \right)} = \varphi \)
Nên \({V_{M.A’CD}} = \frac{1}{3}.{S_{A’CD}}.MN = \frac{1}{3}.\frac{1}{2}.CA’.CD.\sin \varphi .MN = \frac{1}{6}a.b.h.\sin \varphi \)
\( \Rightarrow {V_{ABCD}} = \frac{1}{6}a.b.h.\sin \varphi .\)

Leave a Reply