Bài tập ôn Chương 4 Số phức

Bài 1 (trang 143 SGK Giải tích 12): Thế nào là phần thực phần ảo, mô đun của một số phức? Viết công thức tính mô đun của số phức theo phần thực phần ảo của nó?

Lời giải:

Mỗi số phức là một biểu thức z=a+bi với a,b∈R,i2=-1

Giải bài 1 trang 143 sgk Giải tích 12 | Để học tốt Toán 12

Bài 2 (trang 143 SGK Giải tích 12): Tìm mối liên hệ giữa khái niêm mô đun và khái niệm giá trị tuyệt đối của số thực.

Lời giải:

Mỗi số thực a được gọi là số phức có phần ảo bằng 0

Ta có: a∈R=>a=a+0i

Mô đun của số thực a là:

|a+0i|=√(a2+02 )=|a|

Như vậy với một số thực, khái niệm mô đun và khái niệm giá trị tuyệt đối là đồng nhất.

Bài 3 (trang 143 SGK Giải tích 12): Nêu định nghĩa số phức liên hợp với số phức z. Số phức nào bằng số phức liên hợp của nó?

Lời giải:

Giải bài 3 trang 143 sgk Giải tích 12 | Để học tốt Toán 12

Bài 4 (trang 143 SGK Giải tích 12): 4. Số phức thỏa mãn điều kiện nào thì có điểm biểu diễn ở phần gạch chéo trong các hình a, b , c?

Lời giải:

Mỗi số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình a phải thỏa mãn điều kiện: phần thực a≥1 ( phần ảo b bất kì).

Số phức z = a + bi có điểm biểu diễn trong miền gạch sọc ở hình b phải thỏa mãn điều kiện : phần ảo b∈[-1;2] ( phần thực a bất kì).

Điều kiện: mô đun ≤2 , phần thực a thuộc [-1;1]

Bài 5 (trang 143 SGK Giải tích 12): Trên mặt phẳng tọa độ, tìm tập hợp biểu diễn của các số phức z thỏa mãn điều kiện:

a) Phần thực của z bằng 1

b) Phần ảo của z bằng -2

c) Phần thực của z thuộc đoạn [-1; 2], phần ảo của z thuộc đoạn [0; 1]

d) |z|≤2

Lời giải:

a) Tập hợp các điểm thuộc đường thẳng x =1

b) Tập hợp các điểm thuộc đường thẳng y= -2

c) Tập hợp các điểm thuộc hình chữ nhật có các cạnh nằm trên các đường thẳng x= -1, x= 2, y= 0, y= 1 (hình gạch sọc).

d) Tập hợp các điểm thuộc hình tròn tâm O(0,0), bán kính bằng 2.

Bài 6 (trang 143 SGK Giải tích 12): Tìm các số thực x, y sao cho:

a) 3x+yi=2y+1+(2-x)i

b) 2x+y-1=(x+2y-5)i

Lời giải:

Giải bài 6 trang 143 sgk Giải tích 12 | Để học tốt Toán 12

 

Leave a Reply