Giải bài tập SGK bài 2 Phương trình lượng giác cơ bản

Giải bài tập SGK bài 2 Phương trình lượng giác cơ bản

***************

Bài tập 1 trang 28 SGK Đại số & Giải tích 11

Giải các phương trình sau:

a)  \(\small sin (x + 2) =\frac{1}{3}\)

b) \(\small sin 3x = 1\)

c) \(\small sin (\frac{2x}{3} -\frac{\pi}{3}) =0\)

d) \(\small sin (2x + 20^0) =-\frac{\sqrt{3}}{2}\)

Hướng dẫn giải chi tiết

Câu a:

\(sin (x + 2) =\frac{1}{3}\Leftrightarrow \Bigg \lbrack\begin{matrix} x+2=arcsin \frac{1}{3}+k2 \pi, k \in \mathbb{Z}\\ \\ x+2=\pi -arcsin \frac{1}{3}+k2 \pi, k \in \mathbb{Z} \end{matrix}\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=arcsin \frac{1}{3}-2+k2 \pi, k\in \mathbb{Z}\\ \\ x=\pi – arcsin \frac{1}{3}-2+k2 \pi, k\in \mathbb{Z} \end{matrix}\)

Vậy nghiệm của phương trình là \(x=arcsin \frac{1}{3}-2+k2 \pi (k\in \mathbb{Z})\)

và \(x=\pi – arcsin \frac{1}{3}-2+k2 \pi (k\in \mathbb{Z})\)

Câu b:

\(sin 3x = 1 \Leftrightarrow sin3x=sin\frac{\pi }{2}\)

\(\Leftrightarrow 3x=\frac{\pi }{2}+k2 \pi ,k\in \mathbb{Z}\)

\(\Leftrightarrow x=\frac{\pi }{6}+\frac{k2 \pi}{3},(k\in \mathbb{Z})\)

Vậy nghiệm của phương trình là \(x=\frac{\pi }{6}+\frac{k2 \pi}{3},(k\in \mathbb{Z})\)

Câu c:

\(sin\left ( \frac{2x}{3}-\frac{\pi }{3} \right )=0 \Leftrightarrow \frac{2x}{3}-\frac{\pi }{3}= k\pi, k\in \mathbb{Z}\)

\(\Leftrightarrow \frac{2\pi }{3}=\frac{\pi }{3}+k \pi,k\in \mathbb{Z}\)

\(\Leftrightarrow x=\frac{\pi }{2}+\frac{3k\pi }{2}, k\in Z\)

Vậy nghiệm của phương trình là \(x=\frac{\pi }{2}+k.\frac{3\pi }{2}, k\in Z\)

Câu d:

\(sin(2x+20^0)=-\frac{\sqrt{3}}{2}\Leftrightarrow sin (2x +20^0) = sin(-60^0)\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} 2x+20^0=-60^0+k360^0, k\in \mathbb{Z}\\ \\ 2x+20^0=204^0+k360^0, k\in \mathbb{Z} \end{matrix}\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=-40^0+k180^0, k\in \mathbb{Z}\\ \\ x=110^0+k180^0, k\in \mathbb{Z} \end{matrix}\)

Vậy nghiệm của phương trình là \(x=-40^0+k180^0, (k\in \mathbb{Z}); x=110^0+k180^0, (k\in \mathbb{Z})\)

 

Bài tập 2 trang 28 SGK Đại số & Giải tích 11

Với những giá trị nào của x thì giá trị của các hàm số y = sin3x và y = sin x bằng nhau?

Hướng dẫn giải chi tiết

Giá trị của các hàm \(y=sin3x\) và \(y=sinx\) bằng nhau khi và chỉ khi

\(sin3x=sinx\Leftrightarrow \Bigg \lbrack\begin{matrix} 3x=x+k2\pi, (k\in \mathbb{Z})\\ \\ 3x= \pi-x+k2 \pi, (k\in \mathbb{Z}) \end{matrix}\)

\(\Leftrightarrow \Bigg \lbrack \begin{matrix} x=k\pi , (k\in \mathbb{Z})\\ \\ x=\frac{\pi }{4}+k\frac{\pi }{2} , (k\in \mathbb{Z}) \end{matrix}\)

Vậy với \(x=k\pi , (k\in \mathbb{Z})\) hoặc \(x=\frac{\pi }{4}+k\frac{\pi }{2} , (k\in \mathbb{Z})\) thì sin3x = sinx.

 

Bài tập 3 trang 28 SGK Đại số & Giải tích 11

Giải các phương trình sau:

a) \(\small cos (x – 1) =\frac{2}{3}\)

b) \(\small cos 3x = cos 12^0\) 

c)  \(\small cos (\frac{3x}{2}-\frac{\pi}{4})=-\frac{1}{2}\)

d) Giải bài tập SGK bài 2 Phương trình lượng giác cơ bản .

Hướng dẫn giải chi tiết bài 3

Câu a:

\(cos (x – 1) = \frac{2}{3} \Leftrightarrow \Bigg \lbrack\begin{matrix} x – 1 = arccos \frac{2}{3} + k2\pi\\ \\ x – 1 = – arccos \frac{2}{3} + k2\pi \end{matrix}\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x = 1 + arccos \frac{2}{3} + k2\pi , (k \in Z) \\ \\ x = 1 – arccos \frac{2}{3} + k2\pi , (k \in Z). \end{matrix}\)

Vậy nghiệm phương trình là \(x = 1 + arccos \frac{2}{3} + k2\pi , (k \in Z)\) hoặc \(x = 1 – arccos \frac{2}{3} + k2\pi , (k \in Z).\)

Câu b:

\(cos 3x = cos 120^0\Leftrightarrow 3x = \pm 12^0 + k360^0 (k\in \mathbb{Z})\)

\(\Leftrightarrow x = \pm 4^0 + k120^0 , (k \in Z).\)

Vậy nghiệm phương trình là \(x = \pm 4^0 + k120^0 , (k \in Z).\)

Câu c:

\(cos\left ( \frac{3x}{2}-\frac{\pi }{4} \right )=-\frac{1}{2}\Leftrightarrow cos\left ( \frac{3x}{2}-\frac{\pi }{4} \right )=cos\left ( \pi -\frac{\pi }{3} \right )\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} \frac{3x}{2}-\frac{\pi }{4}=\frac{2\pi }{3}+k2 \pi\\ \\ \frac{3x}{2}-\frac{\pi }{4}=-\frac{2\pi }{3}+k2 \pi \end{matrix},(k\in \mathbb{Z})\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=\frac{11\pi }{18}+k.\frac{4\pi }{3} \\ \\ x=-\frac{5\pi}{18}+k.\frac{4\pi }{3} \end{matrix},(k\in \mathbb{Z})\)

Vậy nghiệm phương trình là \(x=\frac{11\pi }{18}+\frac{4 k\pi }{3}\) và \(x=-\frac{5\pi}{18}+\frac{4 k\pi }{3} (k\in \mathbb{Z})\)

Câu d:

\(cos^22x =\frac{1}{4}\Leftrightarrow \Bigg \lbrack\begin{matrix} cos2x=\frac{1}{2}\\ \\ cos2x=-\frac{1}{2} \end{matrix}\Leftrightarrow \Bigg \lbrack\begin{matrix} cos2x=cos \frac{\pi }{3}\\ \\ cos2x= cos\frac{2\pi }{3} \end{matrix}\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} 2x=\pm \frac{\pi }{3} + k2 \pi\\ \\ 2x=\pm \frac{2\pi }{3} + k2 \pi \end{matrix}, k\in \mathbb{Z} \Leftrightarrow \Bigg \lbrack\begin{matrix} x= \pm \frac{\pi }{6} +k \pi\\ \\ x= \pm \frac{\pi }{3} +k \pi \end{matrix}, k\in \mathbb{Z}\)

Vậy nghiệm phương trình là \(x= \pm \frac{\pi }{6} +k \pi\)và \(x= \pm \frac{\pi }{3} +k \pi, k\in \mathbb{Z}\).

 

Bài tập 4 trang 29 SGK Đại số & Giải tích 11

Giải phương trình sau

\(\small \frac{2cos2x}{1-sin2x}=0\)

Hướng dẫn giải chi tiết

 Điều kiện \(sin2x\neq 1\Leftrightarrow 2x\neq \frac{\pi }{2}+k2 \pi\Leftrightarrow x\neq \frac{\pi }{4}+k \pi(k\in \mathbb{Z})\)

\(\frac{2cos2x}{1-sin2x}=0\Leftrightarrow 2cos2x=0\)

Phương trình đã cho tương đương với:

\(cos2x=0 \Leftrightarrow \Bigg \lbrack\begin{matrix} 2x=\frac{\pi }{2}+k2\pi\\ \\ 2x=-\frac{\pi }{2}+k2\pi \end{matrix} \Leftrightarrow \Bigg \lbrack\begin{matrix} x=\frac{\pi }{4}+k\pi \ \ (loai)\\ \\ x=-\frac{\pi }{4}+k\pi (k\in \mathbb{Z}) \end{matrix}\)

Vậy nghiệm phương trình là \(x=-\frac{\pi }{4}+k\pi (k\in \mathbb{Z})\).

 

Bài tập 5 trang 29 SGK Đại số & Giải tích 11

Giải các phương trình sau:

a) \(\small tan (x – 150) = \frac{\sqrt{3}}{3}\);

b) \(\small cot (3x – 1) = -\sqrt{3}\);

c) \(\small cos 2x . tan x = 0\);

d) \(\small sin 3x . cot x = 0\).

Hướng dẫn giải chi tiết bài 5

Câu a:

Điều kiện \(x – 15^0\neq 90^0+k180^0\) hay \(x\neq 105^0+k.180^0.\)

\(tan (x – 15^0) = \frac{\sqrt{3}}{3}\Leftrightarrow tan(x-15^0)=tan30^0\), với điều kiện:

Ta có phương trình \(tan (x – 15^0) = tan30^0\)

\(\Leftrightarrow x – 15^0 = 30^0 + k180^0 , (k \in \mathbb{Z}).\)

\(\Leftrightarrow x = 45^0 + k180^0 , (k \in \mathbb{Z}).\) (thoả điều kiện)

Vậy nghiệm của phương trình là: \(x = 45^0 + k180^0 , (k \in \mathbb{Z}).\)

Câu b:

\(cot (3x – 1) = -\sqrt{3}\), với điều kiện \(3x-1\neq k\pi (k\in \mathbb{Z})\) hay \(x\neq \frac{1+k \pi}{3}(k\in \mathbb{Z})\)

Ta có phương trình \(cot (3x – 1) = cot(-\frac{\pi }{6})\)

\(\Leftrightarrow 3x-1=-\frac{5\pi }{6}+k \pi, k\in \mathbb{Z}\)

\(\Leftrightarrow x=\frac{1}{3}-\frac{\pi }{18}+k.\frac{\pi }{3},(k\in \mathbb{Z})\) (thoả điều kiện)

Vậy nghiệm phương trình là \(x=\frac{1}{3}-\frac{\pi }{18}+k.\frac{\pi }{3},(k\in \mathbb{Z})\)

Câu c:

\(cos2x.tanx=0 \Leftrightarrow \cos 2x.\frac{{\sin x}}{{\cos x}} = 0\), với điều kiện \(cosx\neq 0\)

\(\Leftrightarrow x\neq \frac{\pi }{2}+k\pi (k\in \mathbb{Z})\), ta có phương trình: \(cos2x . sinx = 0\)

\(\Leftrightarrow \bigg \lbrack\begin{matrix} cos2x=0\\ sin2x=0 \end{matrix}\Leftrightarrow \bigg \lbrack\begin{matrix} 2x=\frac{\pi }{2}+k\pi \\ x=k\pi \end{matrix}(k\in \mathbb{Z})\)

\(\Leftrightarrow \bigg \lbrack\begin{matrix} x=\frac{\pi }{4}+k.\frac{\pi }{2}\\ x=k \pi \end{matrix}(k\in \mathbb{Z})\) (thoả điều kiện)

Vậy nghiệm phương trình là: \(x=\frac{\pi }{4}+k.\frac{\pi }{2}(k\in \mathbb{Z})\) hoặc \(x=k\pi (k\in \mathbb{Z})\)

Câu d:

\(sin 3x . cot x = 0 \Leftrightarrow \sin 3x.\frac{{\cos x}}{{\sin x}} = 0\), với điều kiện \(sinx\neq 0\Leftrightarrow x\neq k.2\pi (k\in \mathbb{Z})\)

Ta có phương trình sin3x.cos = 0

\(\Leftrightarrow \bigg \lbrack\begin{matrix} sin3x=0\\ cosx=0 \end{matrix}\Leftrightarrow \bigg \lbrack\begin{matrix} 3x=k2\pi\\ x=\frac{\pi }{2}+k\pi \end{matrix} (k\in \mathbb{Z})\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=\frac{k2 \pi}{3}\\ \\ x=\frac{\pi }{2}+k \pi \end{matrix}(k \in \mathbb{Z})\)

So sánh với điều kiện ta thấy khi \(k = 3m,m \in \mathbb{Z}\) thì \(x = 2m\pi  \Rightarrow \sin x = 0\) không thỏa điều kiện.

Vậy phương trình có nghiệm là: \(x=\frac{k2 \pi}{3}\) và \(x=\frac{\pi }{2}+k \pi (k \neq 3m, m\in \mathbb{Z})\)

 

Bài tập 6 trang 29 SGK Đại số & Giải tích 11

Với những giá trị nào của x thì giá trị của các hàm số \(\small y = tan ( \frac{\pi}{4}- x)\) và \(\small y = tan2x\)  bằng nhau?

Hướng dẫn giải chi tiết

Giá trị của các hàm số: \(tan\left ( \frac{\pi }{4}-x \right )\) và \(y=tan 2x\) bằng nhau khi:

Ta có \(tan\left ( \frac{\pi }{4}-x \right )=tan2x \Rightarrow 2x=\frac{\pi }{4}-x+k\pi\)

\(\Rightarrow x=\frac{\pi }{12}+\frac{k\pi}{3}(k\neq 3m-1,m\in \mathbb{Z})\)

Vậy phương trình có nghiệm \(x=\frac{\pi }{12}+\frac{k\pi}{3}(k\neq 3m-1,m\in \mathbb{Z})\)

 

Bài tập 7 trang 29 SGK Đại số & Giải tích 11

Giải các phương trình sau:

a) \(sin 3x – cos 5x = 0\);

b) \(\small tan 3x . tan x = 1\).

Hướng dẫn giải chi tiết

Câu a:

\(sin 3x – cos 5x = 0 \Leftrightarrow cos 5x = sin 3x\)

\(\Leftrightarrow cos 5x = cos (\frac{\pi }{2} – 3x)\)

\(\Rightarrow \Bigg \lbrack\begin{matrix} 5x= \frac{\pi }{2}-3x+k2 \pi \\ \\ 5x =- \frac{\pi }{2}+3x +k2 \pi \end{matrix} (k\in \mathbb{Z})\)

\(\Leftrightarrow \Bigg \lbrack\begin{matrix} x=\frac{\pi }{16}+\frac{k\pi }{4} \\ \\ x=-\frac{\pi }{4} +k\pi \end{matrix}, (k\in Z)\)

Vậy nghiệm phương trình là: \(x=\frac{\pi }{16}+\frac{k\pi }{4} (k\in Z)\) và \(x=-\frac{\pi }{4} +k\pi, (k\in \mathbb{Z})\)

Câu b:

\(tan 3x . tan x = 1\)

Điều kiện: \(\left\{\begin{matrix} cos3x \neq 0\\ \\ cosx \neq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq \frac{\pi }{6}+k.\frac{\pi }{3}\\ \\ x\neq \frac{\pi }{2} +k.\pi \end{matrix}\right. (k\in \mathbb{Z})\)

\(tan3x.tanx=1\Rightarrow tan3x=\frac{1}{tanx}\Rightarrow tan3x=cotx\)

\(\Rightarrow tan3x=tan\left ( \frac{\pi }{2}-x \right )\)

\(\Rightarrow 3x=\frac{\pi }{2}-x+k \pi(k\in \mathbb{Z})\)

\(\Rightarrow x=\frac{\pi }{8}+\frac{k \pi }{4}, k \in \mathbb{Z}\) (thoả điều kiện)

Vậy nghiệm phương trình là \(x=\frac{\pi }{8}+\frac{k \pi }{4}, k \in \mathbb{Z}\).

Leave a Reply