Bài 3: Phép đối xứng trục – Hình học 11

1. Định nghĩa

Cho đường thẳng d. Phép biến mỗi điểm M thuộc d thành chính nó. Biến mỗi điểm M không thuộc d thành điểm M’ sao cho d là đường trung trực của MM’, được gọi là phép đối xứng qua đường thẳng d (hay là phép đối xứng trục) . Đường thẳng d gọi là trục đối xứng.

Phép đối xứng trục d thường được kí hiệu là Đd.

Bài 3: Phép đối xứng trục - Hình học 11

Nhận xét:

  • Đd(M)=M’ ⇒ Đd(M’)=M.
  • \(M \in d\) ⇒ Đd(M)=M.

2. Biểu thức tọa độ của phép đối xứng trục

a) Chọn hệ trục tọa độ Oxy sao cho đường thẳng d trùng với trục Ox

Bài 3: Phép đối xứng trục - Hình học 11

Với mỗi điểm M(x;y), gọi M’(x’;y’) là ảnh của M qua phép đối xứng trục d hay M’=Đd(M)=(x’;y’) thì:

\(\left\{ \begin{array}{l}
x’ =  x\\
y’ = – y
\end{array} \right.\)

b) Chọn hệ trục tọa độ Oxy sao cho đường thẳng d trùng với trục Oy

Bài 3: Phép đối xứng trục - Hình học 11

Với mỗi điểm M(x;y), gọi M’(x’;y’) là ảnh của M qua phép đối xứng trục d hay M’=Đd(M)=(x’;y’) thì:

\(\left\{ \begin{array}{l}
x’ =  – x\\
y’ = y
\end{array} \right.\)

3. Tính chất

a) Tính chất 1

Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kỳ.

b) Tính chất 2:

Phép đối xứng trục biến một đường thẳng thành một đường thẳng, biến một đoạn thẳng thành một đoạn thẳng bằng nó, biến một tam giác thành một tam giác bằng nó , biến một đường tròn thành một đường tròn có cùng bán kính.

Bài 3: Phép đối xứng trục - Hình học 11

4. Trục đối xứng của một hình

Định nghĩa:

Đường thẳng d gọi là trục đối xứng của hình H nếu phép dối xứng qua d biến hình H thành chính nó, tức là Đd(H)=H.

Bài 3: Phép đối xứng trục - Hình học 11

Bài tập minh họa

Ví dụ 1:

Cho điểm M(1;3). Tìm tọa đô M’ là ảnh của M qua phép đối xứng trục Oy, rồi tìm tọa độ của M’’ là ảnh của M’ qua phép đối xứng trục Ox.

Hướng dẫn giải:

ĐOy(M)=M’\( \Rightarrow \left\{ \begin{array}{l}x’ =  – x =  – 1\\y’ = y = 3\end{array} \right. \Rightarrow M'( – 1;3).\)

ĐOx(M’)=M’’\( \Rightarrow \left\{ \begin{array}{l}x” = x’ =  – 1\\y” =  – y’ =  – 3\end{array} \right. \Rightarrow M'( – 1; – 3).\)

 

Ví dụ 2:

Cho đường tròn (C): \({(x – 1)^2} + {(y – 2)^2} = 4.\) Viết phương trình đường tròn (C’) là ảnh ủa đường tròn (C) qua phép đối xứng trục Ox.

Hướng dẫn giải:

Gọi I và R lần lượt là tâm và bán kính của đường tròn (C), I’ và R’ lần lượt là tâm và bán kính của đường tròn (C’).

Khi đó ta có: \(R’ = R = 2\) và I’=ĐOx(I).

I’=ĐOx(I)\( \Rightarrow \left\{ \begin{array}{l}{x_{I’}} = {x_I} = 1\\{y_{I’}} =  – {y_I} =  – 2\end{array} \right.\)

Vậy phương trình đường tròn (C’) là: \({(x – 1)^2} + {(y + 2)^2} = 4.\)

 

Ví dụ 3:

Cho \(d:\frac{{x – 1}}{2} = \frac{{y + 2}}{3}.\) Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng trục Oy.

Hướng dẫn giải:

Gọi \(M(x,y) \in d,\) khi đó ĐOy(M)=M’\( \Rightarrow \left\{ \begin{array}{l}x’ =  – x\\y’ = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  – x’\\y = y’\end{array} \right. \Rightarrow M( – x’;y’).\)

\(M \in d \Rightarrow \frac{{ – x’ – 1}}{2} = \frac{{y’ + 2}}{3} \Leftrightarrow 3x’ + 2y’ + 7 = 0\)

Vậy phương trình của d’ là: \(3x + 2y + 7 = 0.\)

Leave a Reply