Bài 3: Tích của vectơ với một số – Hình học 10

1. Định nghĩa của một vectơ và một số

Xem hình vẽ minh họa và ta có các nhận xét sau:

Bài 3: Tích của vectơ với một số - Hình học 10

Xét hai vectơ \(\vec{a}\) và \(\vec{b}\) ta nhận thấy rằng:

Chúng có giá song song với nhau và cùng hướng, độ lớn về chiều dài của \(\vec{b}\) gấp 2 lần độ lớn chiều dài của \(\vec{a}\)

Lúc đó, ta viết rằng: \(\vec{b}=2\vec{a}\)

Xét đến hai vectơ \(\vec{c}\) và \(\vec{d}\) ta có nhận xét:

Chúng có giá song song và ngược hướng, độ lớn về chiều dài của \(\vec{d}\) gấp 3 lần độ lớn chiều dài của \(\vec{c}\)

Lúc đó, ta viết rằng: \(\vec{d}=-3\vec{c}\)

Định nghĩa

Tích của vectơ \(\vec{a}\) với số thực k là một vectơ, kí hiệu là \(k\vec{a}\), được xác định như sau:

Nếu \(k\geq 0\) thì vectơ \(k\vec{a}\) cùng hướng với vectơ \(\vec{a}\)

Nếu \(k<0\) thì vectơ \(k\vec{a}\) ngược hướng với vectơ \(\vec{a}\)

Độ dài của vectơ \(k\vec{a}\) bằng \(|k|.|\vec{a}|\)

2. Các tính chất của phép nhân vectơ với số

Bài 3: Tích của vectơ với một số - Hình học 10

3. Điều kiện để hai vectơ cùng phương

Chúng ta cùng xem qua hình ảnh sau

Bài 3: Tích của vectơ với một số - Hình học 10

Một cách tổng quá, ta có

Vectơ \(\vec{b}\) cùng phương với vectơ \(\vec{a}\neq \vec{0}\) khi và chỉ khi tồn tại số k sao cho \(\vec{b}=k\vec{a}\)

Ứng dụng vào ba điểm thẳng hàng

Điều kiện cần và đủ để ba điểm A, B, C thẳng hàng là có số k sao cho \(\vec{AB}=k\vec{AC}\)

4. Biểu thị một vectơ qua hai vectơ không cùng phương

Bài 3: Tích của vectơ với một số - Hình học 10

Dựa vào hình trên, ta có định lí sau

Cho hai vectơ không cùng phương \(\vec{a}\) và \(\vec{b}\). Khi đó mọi vectơ \(\vec{x}\) đều có thể hiển thị một cách duy nhất qua hai vectơ \(\vec{a}\) và \(\vec{b}\), nghĩa là có cặp số duy nhất m và n sao cho:

\(\vec{x}=m\vec{a}+n\vec{b}\)

 

Bài tập minh họa

1. Bài tập cơ bản

Bài 1: Cho tam giác OAB vuông cân với \(OA=OB=a\). Tính độ dài của các vectơ \(\vec{OA}+\vec{OB}\); \(3\vec{OA}+4\vec{OB}\)

Hướng dẫn:

Bài 3: Tích của vectơ với một số - Hình học 10

Do tam giác OAB vuông cân tại O có cạnh là a. Dễ dàng tính được \(\vec{OA}+\vec{OB}\) theo quy tắc hình bình hành, \(\vec{OA}+\vec{OB}=\vec{OD}\)

Độ lớn của \(|\vec{OD}|\)=\(a\sqrt{2}\)

Tương tự, ta tính \(3\vec{OA}+4\vec{OB}\)

Nhận thấy rằng \(3|\vec{OA}|=3a;4|\vec{OB}|=4a\)

Theo quy tắc hình bình hành và theo hình vẽ, ta có \(3\vec{OA}+4\vec{OB}=\vec{OC}\)

Độ lớn của \(|\vec{OC}|=5a\) theo định lý Pytago.

Bài 2: Chứng minh rằng với tứ giác ABCD bất kì, ta luôn có hệ thức: \(\vec{AB}-\vec{AD}=\vec{CB}-\vec{CD}\)

Hướng dẫn:

Bài 3: Tích của vectơ với một số - Hình học 10

Đề yêu cầu cần chứng minh \(\vec{AB}-\vec{AD}=\vec{CB}-\vec{CD}\)

Ta viết lại: \(\Leftrightarrow \vec{AB}+\vec{DA}=\vec{CB}+\vec{DC}=\vec{DB}\Rightarrow dpcm\)

2. Bài tập nâng cao

Bài 1: Cho hình chữ nhật có \(AB=5cm\), \(BC=10cm\). Tính \(|\vec{AB}+\vec{AC}+\vec{AD}|\)

Hướng dẫn:

Bài 3: Tích của vectơ với một số - Hình học 10

Như hình trên, chúng ta có thể viết lại như sau:

\(\vec{AB}+\vec{AC}+\vec{AD}=\vec{DC}+\vec{AC}+\vec{AD}=\vec{AC}+\vec{AC}=2\vec{AC}\)

Vậy \(|\vec{AB}+\vec{AC}+\vec{AD}|=2|\vec{AC}|\)

Bằng Pytago, ta dễ dàng tính toán được \(2|\vec{AC}|=10\sqrt{5}(cm)\)

Bài 2: Cho tam giác ABC. M là điểm thuộc đoạn BC sao cho \(MB=2MC\). Chứng minh rằng: \(\vec{AM}=\frac{1}{3}\vec{AB}+\frac{2}{3}\vec{AC}\)

Hướng dẫn: 

Bài 3: Tích của vectơ với một số - Hình học 10

Theo giả thiết, \(MB=2MC\).

Trên AB lấy điểm D sao cho \(AD=\frac{1}{3}AB\), trên AC lấy điểm E sao cho \(CE=\frac{1}{3}AC\)

Vậy, theo đề được viết lại như sau: \(\frac{1}{3}\vec{AB}=\vec{AD};\frac{2}{3}\vec{AC}=\vec{AE}\)

Cần chứng minh ADME là hình bình hành.

Thật vậy, với tỷ lệ đề cho, ta tìm được các cặp cạnh đối song song nhờ định lí Thales đảo.

Vậy: \(\left\{\begin{matrix} AD//ME\\ AE//DM \end{matrix}\right.\) hay ADME là hình bình hành

nên \(\vec{AM}=\frac{1}{3}\vec{AB}+\frac{2}{3}\vec{AC}\)

Leave a Reply