Bài 3: Các phép toán tập hợp – Toán 10

1. Phép giao

Giao của hai tập hợp A và B, kí hiệu \(A \cap B\) là tập hợp gồm các phần tử vừa thuộc A, vừa thuộc B.

\(A \cap B = \left\{ {x|x \in A\,\,va\,\,x \in B} \right\}\)

Bài 3: Các phép toán tập hợp - Toán 10

2. Phép hợp

Hợp của hai tập hợp A và B, kí hiệu \(A \cup B\) là tập hợp các phần tử thuộc A hoặc thuộc B.

\(A \cup B = \left\{ {x|x \in A\,\,hoac\,\,x \in B} \right\}.\)

Bài 3: Các phép toán tập hợp - Toán 10

3. Phép hiệu

Hiệu của tập hợp A với tập hợp B, kí hiệu A\B là tập gồm các phần tử thuộc A và không thuộc B.

\(A\backslash B = \left\{ {x|x \in A\,\,va\,\,x \notin B} \right\}.\)

Bài 3: Các phép toán tập hợp - Toán 10

4. Phần bù

Nếu \(B \subset A\) thì A\B được gọi là phần bù của B trong A, kí hiệu \({C_A}B.\)

Bài 3: Các phép toán tập hợp - Toán 10

Bài tập minh họa

Ví dụ 1:

Cho \(A = \left\{ {1;2;3;5;6} \right\};\,B = \left\{ {x \in \mathbb{Z}| – 3 \le x \le 2} \right\}\)

\(C = \left\{ {x \in \mathbb{R}|2{x^2} – 3x = 0} \right\}\)

a) Dừng phương pháp liệt kê phần tử xác định các tập hợp B và C.

b) Xác định các tập hợp sau: \(A \cap B,B \cap C,A \cap C.\)

c) Xác định các tập hợp sau: \(A \cup B,B \cup C,A \cup C.\)

d) Xác định các tập hợp sau: \(A\backslash B,B\backslash C,A\backslash C.\)

Hướng dẫn giải:

a) \(B = \left\{ { – 3; – 2; – 1;0;1;2} \right\};\,\,C = \left\{ {0;\frac{3}{2}} \right\}.\)

b) \(A \cap B = \left\{ {1;2} \right\};B \cap C = \left\{ 0 \right\};A \cap C = \emptyset .\)

c) \(A \cup B = \left\{ { – 3; – 2; – 1;0;1;2;3;4;5;6} \right\}.\)

\(B \cup C = \left\{ { – 3; – 2; – 1;0;1;2;\frac{3}{2}} \right\}\)

\(A \cup C = \left\{ {0;1;2;3;4;5;6;\frac{3}{2}} \right\}\)

d) \(A\backslash B = \left\{ {3;4;5;6} \right\};\,\,B\backslash C = \left\{ { – 3; – 2; – 1;1;2} \right\};\)

\(A\backslash C = \left\{ {1;2;3;4;5;6} \right\}.\)

 

Ví dụ 2:

Cho \(A = \left\{ {0;2;4;6;8;10} \right\};B = {\rm{\{ }}0;1;2;3;4;5;6\} ;C = \left\{ {4;5;6;7;8;9;10} \right\}.\)

Hãy liệt kê các phần tử của các tập hợp dưới đây?

a) \(A \cap (B \cap C);\)

b) \(A \cup (B \cup C);\)

c) \(A \cap \left( {B \cup C} \right);\)

d) \(A \cup (B \cap C).\)

e) \(\left( {A \cap B} \right) \cup C.\)

Hướng dẫn giải:

a) Ta có: \(B \cap C = \left\{ {4;5;6} \right\}\)

\( \Rightarrow A \cap \left( {B \cap C} \right) = \left\{ {4;6} \right\}.\)

b) \(B \cup C = \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\)

\( \Rightarrow A \cup \left( {B \cup C} \right) = \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}.\)

c) Ta có \(B \cup C = \left\{ {0;1;2;3;4;5;6;7;8;9;10} \right\}\)

\( \Rightarrow A \cap \left( {B \cup C} \right) = \left\{ {0;2;4;6;8;10} \right\}.\)

d) Ta có: \(B \cap C = \left\{ {4;5;6} \right\}\)

\( \Rightarrow A \cup (B \cap C) = \left\{ {0;2;4;5;6;8;10} \right\}.\)

e) Ta có: \(A \cap B = \left\{ {0;2;4;6} \right\}\)

\( \Rightarrow \left( {A \cap B} \right) \cup C = \left\{ {2;4;5;6;7;8;9;10} \right\}.\)

Leave a Reply