• Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
Bạn đang ở:Trang chủ / Đề thi TN THPT môn Toán 2022 / Viết phương trình tiếp tuyến của đồ thị hàm số sau \(y = {x^3} – 3{x^2} + 1\) biết nó song song với đường thẳng \(y = 9x + 6

Viết phương trình tiếp tuyến của đồ thị hàm số sau \(y = {x^3} – 3{x^2} + 1\) biết nó song song với đường thẳng \(y = 9x + 6

09/05/2022 //  by admin//  Để lại bình luận




  • Câu hỏi:

    Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} – 3{x^2} + 1\) biết nó song song với đường thẳng \(y = 9x + 6.\) 


    • A.
      \(y = 9x + 26;y = 9x – 6\) 

    • B.
      \(y = 9x – 26\) 

    • C.
      \(y = 9x – 26;y = 9x + 6\) 

    • D.
      \(y = 9x + 26\) 

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có \(y’ = 3{x^2} – 6x\)

    Gọi \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến \(\left( d \right)\) và đồ thị hàm số \(y = {x^3} – 3{x^2} + 1.\)

    Khi đó hệ số góc của \(\left( d \right)\) là \(k = f’\left( {{x_0}} \right) = 3x_0^2 – 6{x_0}\)

    Mà \(\left( d \right)\) song song với \(y = 9x + 6 \Rightarrow f’\left( {{x_0}} \right) = 9 \Leftrightarrow 3x_0^2 – 6{x_0} = 9 \Leftrightarrow 3x_0^2 – 6{x_0} – 9 = 0 \Leftrightarrow \left[ \begin{array}{l}{x_0} =  – 1 \Rightarrow {y_0} =  – 3\\{x_0} = 3 \Rightarrow {y_0} = 1\end{array} \right.\)

    + Với \(M\left( { – 1; – 3} \right) \Rightarrow \left( d \right):y = f’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + {y_0} = 9\left( {x + 1} \right) – 3 = 9x + 6\) (loại vì trùng với đường thẳng \(y = 9x + 6\))

    + Với \(M\left( {3;1} \right) \Rightarrow \left( d \right):y = f’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + {y_0} = 9\left( {x – 3} \right) + 1 = 9x – 26\) (thỏa mãn)

    Chọn B.

    Hãy suy nghĩ và trả lời câu hỏi trước khi montoan cung cấp đáp án và lời giải

    ADSENSE




  • Bài liên quan:

    1. Cho \(a\), \(b\), \(c\) dương và khác \(1\). Các hàm số \(y = {\log _a}x\), \(y = {\log _b}x\), \(y = {\log _c}x\) có đồ thị như hình vẽKhẳng định nào dưới đây đúng?
    2. Cho \(a > 0\), \(b > 0\), giá trị của biểu thức \(T = 2{\left( {a + b} \right)^{ – 1}}.{\left( {ab} \right)^{\frac{1}{2}}}.{\left[ {1 + \dfrac{1}{4}{{\left( {\sqrt {\dfrac{a}{b}} – \sqrt {\dfrac{b}{a}} } \right)}^2}} \right]^{\frac{1}{2}}}\) bằng
    3. Cho \(a\) là số thực dương khác \(5\). Tính \(I = {\log _{\frac{a}{5}}}\left( {\dfrac{{{a^3}}}{{125}}} \right)\).
    4. Tìm tập xác định \(D\) của hàm số sau \(y = {\left( {{x^2} – 3x – 4} \right)^{\sqrt {2 – \sqrt 3 } }}\). 
    5. Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h = 4\). Tính thể tích \(V\) của khối nón đã cho.
    6. Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(SA\) vuông góc với mặt phẳng\(\left( {ABC} \right)\)và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp \(S.ABC\) có bán kính là
    7. Đường thẳng \(CM\) cắt đường thẳng \(C'A'\) tại \(P,\) đường thẳng \(CN\) cắt đường thẳng \(C'B'\) tại \(Q.\) Tính thể tích \(V\) của khối đa diện \(A'MPB'NQ.\)
    8. Xét các số thực dương \(x,y\) thỏa mãn sau \({\log _{\sqrt 3 }}\frac{{x + y}}{{{x^2} + {y^2} + xy + 2}} = x\left( {x – 3} \right) + y\left( {y
    9. Một người đi từ A đến bờ song lấy nước mang về B. Tính đoạn đường ngắn nhất mà người ấy có thể đi.
    10. Tìm giá trị nhỏ nhất \(m\) của hàm số \(y = f\left( x \right)\) trên \(\left[ {0;4} \right]\).

    Chuyên mục: Đề thi TN THPT môn Toán 2022Thẻ: Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Phan Bội Châu

    Bài viết trước « Cho lăng trụ tam giác đều, có độ dài tất cả các cạnh bằng \(2\). Tính thể tích \(V\) của khối lăng trụ đó.
    Bài viết sau Biết góc giữa mặt phẳng \(\left( {A'BC} \right)\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\) và hình chiếu vuông góc của \(A'\) trên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(AB\). Tính thể tích \(V\) của khối lăng trụ đó. »

    Reader Interactions

    Trả lời Hủy

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    Sidebar chính




    MỤC LỤC

    • Các khoảng nghịch biến của hàm số sau \(y =  – {x^4} + 2{x^2} – 4\) là 
    • Cho biết một hình nón tròn xoay có độ dài đường sinh bằng đường kính đáy. Diện tích đáy của hình nón bằng \(9\pi \) .
    • Cho \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{2x – 1}}\) . Biết \(F\left( 1 \right) = 2\) . Giá trị của \(F\left( 2 \right)\) là
    • Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x\left( {x – 1} \right){\left( {x + 2} \right)^2};\forall \,x \in \mathbb{R}\) . Số điểm cực trị của hàm số đã cho là:
    • Cho phương trình \(\log _2^2\left( {4x} \right) – {\log _{\sqrt 2 }}\left( {2x} \right) = 5\) . Nghiệm nhỏ nhất của phương trình thuộc khoảng
    • Tìm tập nghiệm \(S\) của bất phương trình \({3^x}
    • Đồ thị hàm số \(y = \dfrac{{{x^2} + 1}}{{{x^2} – \left| x \right| – 2}}\) có tất cả bao nhiêu đường tiệm cận?
    • Gọi M và N lần lượt là hình chiếu vuông góc của A trên các đường thẳng SB và SC. Tính \(\dfrac{{50V\sqrt 3 }}{{{a^3}}}\), với V là thể tích khối chóp A.BCNM
    • Mặt phẳng qua \(AB\) cắt \(SC\) và \(SD\) lần lượt tại \(M\) và \(N\) sao cho \(\dfrac{{SM}}{{SC}} = x\). Tìm \(x\) biết \(\dfrac{{{V_{S.ABMN}}}}{{{V_{S.ABCD}}}} = \dfrac{{11}}{{200}}\)
    • Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right) + m – 2018 = 0\) có duy nhất một nghiệm.
    • Gập đôi tấm bạt lại theo đoạn nối trung điểm hai cạnh là chiều rộng của tấm bạt sao cho hai mép chiều dài còn lại của tấm bạt sát đất và cách nhau \(x\,(m)\) (xem hình vẽ). Tìm \(x\) để khoảng không gian phía trong lều là lớn nhất?
    • Có bao nhiêu giá trị nguyên của tham số thực \(m\) thuộc khoảng \(\left( { – 1000;1000} \right)\) để hàm số \(y = 2{x^3} – 3\left( {2m + 1} \right){x^2} + 6m\left( {m + 1} \right)x + 1\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\)?
    • Hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right)\) trên khoảng \({\rm{K}}\). Hình vẽ bên là đồ thị của hàm số \(f'\left( x \right)\) trên khoảng \({\rm{K}}\). Hỏi hàm số \(f\left( x \right)\) có bao nhiêu điểm cực trị?
    • Hỏi công ty phải bán giá tua là bao nhiêu để doanh thu từ tua xuyên Việt là lớn nhất.
    • Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { – 2017;2018} \right]\) để hàm số \(y = \frac{1}{3}{x^3} – m{x^2} + \left( {m + 2} \right)x\) có hai điểm cực trị nằm trong khoảng \(\left( {0; + \infty } \right)\).
    • Giá trị lớn nhất của biểu thức \(P = \dfrac{{\sqrt {{x^2} + 1} }}{{{x^2} + 5}}\) bằng
    • Cần lập một đội thanh niên tình nguyện gồm 4 người. Biết xác suất để trong 4 người được chọn có 3 nữ bằng \(\dfrac{2}{5}\) lần xác suất 4 người được chọn toàn nam. Hỏi chi đoàn đó có bao nhiêu đoàn viên?
    • Cho khối chóp S.ABCD có đáy là hình bình hành, gọi B ' và D ' theo thứ tự là trung điểm các cạnh SB, SD. Mặt phẳng (AB’D’) cắt cạnh SC tại C’. Tính tỷ số thể tích của hai khối đa diện được chia ra bởi mặt phẳng (AB’D’)
    • Cho hàm số \(y = \dfrac{1}{3}{x^3} – m{x^2} + \left( {4m – 3} \right)x + 2017\). Tìm giá trị lớn nhất của tham số thực \(m\) để hàm số đã cho đồng biến trên \(\mathbb{R}\).
    • Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(h\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\) có đúng \(3\) điểm cực trị.
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2022 - Học toán và Trắc nghiệm Toán online.