Câu hỏi:
Trong không gian với hệ tọa độ \(Oxyz\), biết rằng tập hợp tất cả các điểm \(M\left( {x;y;z} \right)\) sao cho \(\left| x \right| + \left| y \right| + \left| z \right| = 3\) là một hình đa diện. Tính thể tích V của khối đa diện đó.
-
A.
\(V = 72\). -
B.
\(V = 36\). -
C.
\(V = 27\). -
D.
\(V = 54\).
Lời giải tham khảo:
Đáp án đúng: B
Tập hợp tất cả các điểm \(M\left( {x;y;z} \right)\) sao cho \(\left| x \right| + \left| y \right| + \left| z \right| = 3\) là hình bát diện đều SABCDS’ (như hình vẽ)
Thể tích V của khối đa diện đó :
\(V = 2.{V_{S.ABCD}} = 2.\dfrac{1}{3}.SO.{S_{ABCD}}\)
\(ABCD\) là hình vuông có cạnh \(BC = OB.\sqrt 2 = 3\sqrt 2 \)
\( \Rightarrow {S_{ABCD}} = {\left( {3\sqrt 2 } \right)^2} = 18\)
\( \Rightarrow V = 2.\dfrac{1}{3}.3.18 = 36\).
Chọn: B
Trả lời