• Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
Bạn đang ở:Trang chủ / Đề thi TN THPT môn Toán 2022 / Nếu \(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C\) thì \(f\left( x \right)\) bằng

Nếu \(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C\) thì \(f\left( x \right)\) bằng

13/05/2022 //  by admin//  Để lại bình luận




  • Câu hỏi:

    Nếu \(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C\) thì \(f\left( x \right)\) bằng  


    • A.
      \(f\left( x \right) = 3{x^2} + {e^x}\). 

    • B.
      \(f\left( x \right) = \dfrac{{{x^4}}}{3} + {e^x}\). 

    • C.
      \(f\left( x \right) = {x^2} + {e^x}\).    

    • D.
      \(f\left( x \right) = \dfrac{{{x^4}}}{{12}} + {e^x}\). 

    Lời giải tham khảo:

    Đáp án đúng: C

    \(\int {f\left( x \right)} dx = \dfrac{{{x^3}}}{3} + {e^x} + C \Rightarrow f\left( x \right) = {x^2} + {e^x}\).

    Chọn: C

    Hãy suy nghĩ và trả lời câu hỏi trước khi montoan cung cấp đáp án và lời giải

    ADSENSE




  • Bài liên quan:

    1. Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: \(f\left( 0 \right) = 2\sqrt 2 \), \(f\left( x \right) > 0,\forall x \in \mathbb{R}\) và \(f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} ,\,\forall x \in \mathbb{R}\). Khi đó giá trị \(f\left( 1 \right)\) bằng
    2. Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\), \(AB = a\sqrt 3 \), \(BC = 2a\), đường thẳng \(AC'\) tạo với mặt phẳng \(\left( {BCC'B'} \right)\) một góc \(30^\circ \). Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng
    3. Cho phương trình \(\left( {2\sin x – 1} \right)\left( {\sqrt 3 \tan x + 2\sin x} \right) = 3 – 4{\cos ^2}x\). Tổng tất cả các nghiệm thuộc đoạn \(\left[ {0;\,20\pi } \right]\) của phương trình bằng
    4. Cho hình chóp \(S.\,ABC\) có \(AB = AC = 4,\,BC = 2,\,SA = 4\sqrt 3 \), . Tính thể tích khối chóp \(S.\,ABC.\)
    5. Có bao nhiêu số nguyên \(m\) thuộc đoạn \(\left[ { – 2019;\,2019} \right]\) để hàm số \(g\left( x \right) = f\left( {1 – x} \right)\) nghịch biến trên khoảng \(\left( { – \infty ;\, – 1} \right)\)?
    6. Hình chiếu vuông góc của điểm \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm tam giác \(ABC\). Gọi \(\varphi \) là góc giữa đường thẳng \(SB\) với mặt phẳng \(\left( {SCD} \right)\), tính \(\sin \varphi \) biết rằng \(SB = a\).
    7. Cho hàm số \(y = \left| {{{\sin }^3}x – m.\sin \,x + 1} \right|\). Gọi S là tập hợp tất cả các số tự nhiên m sao cho hàm số đồng biến trên \(\left( {0;\dfrac{\pi }{2}} \right)\). Tính số phần tử của S?
    8. Sao cho \(\dfrac{{AB}}{{AM}} + 2.\dfrac{{AD}}{{AN}} = 4\). Kí hiệu \(V,\,{V_1}\) lần lượt là thể tích của các khối chóp \(S.ABCD\) và \(S.MBCDN\). Tìm giá trị lớn nhất của tỉ số \(\dfrac{{{V_1}}}{V}\).
    9. Có bao nhiêu giá trị thực của m để bất phương trình sau \(\left( {2m + 2} \right)\left( {x + 1} \right)\left( {{x^3} – 1} \right) – \left
    10. Vào đầu năm 2016, Curtis Cooper và các cộng sự tại nhóm nghiên cứu Đại học Central Mis-souri, Mỹ công bố số nguyên tố lớn

    Chuyên mục: Đề thi TN THPT môn Toán 2022Thẻ: Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Tiên Lãng

    Bài viết trước « Cho \(a\), \(b\) là các số dương thỏa mãn \({\log _9}a = {\log _{16}}b = {\log _{12}}\dfrac{{5b – a}}{2}\). Tính giá trị \(\dfrac{a}{b}\).
    Bài viết sau Có bao nhiêu giá trị x thỏa mãn sau \({5^{{x^2}}} = {5^x}\)?   »

    Reader Interactions

    Trả lời Hủy

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    Sidebar chính




    MỤC LỤC

    • Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là
    • Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4.\) Giá trị của \({u_1}\) là
    • Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên \(\left[ { – 2;0} \right]\) bằng
    • Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a,\,SA \bot \left( {ABC} \right)\,,\,SA = 3a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là
    • Cho khối trụ có thể tích bằng \(45\pi \,c{m^3},\) chiều cao bằng \(5cm.\) Tính bán kính \(R\) của khối trụ đã cho.
    • Cho khối chóp tứ giác đều \(S.ABCD\) có thể tích bằng \({a^3}\) và đáy \(ABCD\) là hình vuông cạnh \(a.\) Tính \(\cos \alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy.
    • Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right).\) Tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là điểm \(I\) với
    • Cho hàm số \(y = a{x^4} + b{x^2} + c{\rm{ }}\left( {a \ne 0} \right)\) có bảng biến thiên dưới đây: Tính \(P = a – 2b + 3c.\)
    • Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x – 1) = {\log _2}(mx – 8)\) có hai nghiệm thực phân biệt?
    • Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng
    • Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:Đồ thị hàm số \(y = {x^3} + b{x^2} – x + d{\rm{ }}\left( {b,d \in \mathbb{R}} \right)\) có thể là dạng nào trong các dạng trên?
    • Tìm tập xác định của hàm số sau \(y = \frac{1}{{1 – \ln x}}\). 
    • Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:Mệnh đề nào sau đây đúng?
    • Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)
    • Gọi \({V_1}\) là thể tích của khối đa diện chứa đỉnh \(S\) và \({V_2}\) là thể tích khối đa diện còn lại. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
    • Để kịp thời đưa công trình vào sử dụng, công ty xây dựng quyết định từ tháng thứ \(2\), mỗi tháng tăng \(5\% \) khối lượng công việc so với tháng kề trước. Hỏi công trình sẽ hoàn thành ở tháng thứ mấy sau khi khởi công?
    • Cho hàm số \(f\left( x \right) = \frac{{x – {m^2}}}{{x + 8}}\) với \(m\) là tham số thực. Giả sử \({m_0}\) là giá trị dương của tham số \(m\) để hàm số có giá trị nhỏ nhất trên đoạn \(\left[ {0;3} \right]\) bằng \( – 3\). Giá trị \({m_0}\) thuộc khoảng nào trong các khoảng cho dưới đây?
    • Cho hình chóp S.ABC có đáy ABC là tam giác với \(AB = 2cm,AC = 3cm,\;\angle BAC = {60^0},SA \bot \left( {ABC} \right).\)Gọi \({B_1},{C_1}\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm \(A,B,C,{B_1},{C_1}.\)
    • Hàm số \(f(x) = {2^{2x}}\) có đạo hàm
    • Tìm tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng hai nghiệm.
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2022 - Học toán và Trắc nghiệm Toán online.