• Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
Bạn đang ở:Trang chủ / Đề thi TN THPT môn Toán 2022 / Mỗi lít nước cam nhận được \(60\) điểm và mỗi lít nước táo nhận được \(80\) điểm. Gọi \(x,y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính \(T = 2{x^2} + {y^2}\).

Mỗi lít nước cam nhận được \(60\) điểm và mỗi lít nước táo nhận được \(80\) điểm. Gọi \(x,y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính \(T = 2{x^2} + {y^2}\).

07/05/2022 //  by admin//  Để lại bình luận




  • Câu hỏi:

    Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa \(24g\) hương liệu, \(9\) lít nước và \(210g\) đường để pha chế nước cam và nước táo. Để pha chế \(1\) lít nước cam cần \(30g\) đường, \(1\) lít nước và \(1g\) hương liệu; còn để pha chế \(1\) lít nước táo, cần \(10g\) đường, \(1\) lít nước và \(4g\) hương liệu. Mỗi lít nước cam nhận được \(60\) điểm và mỗi lít nước táo nhận được \(80\) điểm. Gọi \(x,y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính \(T = 2{x^2} + {y^2}\).


    • A.
      \(T = 43\) 

    • B.
      \(T = 66\) 

    • C.
      \(T = 57\) 

    • D.
      \(T = 88\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    Gọi \(x,y\) lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế \(\left( {x \ge 0;y \ge 0} \right)\).

    Để pha chế \(x\) lít nước cam thì cần \(30x\left( g \right)\) đường, \(x\) lít nước và \(x\left( g \right)\) hương liệu.

    Để pha chế \(y\) lít nước táo thì cần \(10y\left( g \right)\) đường, \(y\) lít nước và \(4y\left( g \right)\) hương liệu.

    Theo bài ra ta có hệ bất phương trình: \(\left\{ \begin{array}{l}30x + 10y \le 210\\x + y \le 9\\x + 4y \le 24\\x \ge 0,y \ge 0\end{array} \right.\,\,\left( * \right)\)

    Số điểm đạt được khi pha \(x\) lít nước cam và \(y\) lít nước táo là: \(M\left( {x;y} \right) = 60x + 80y\).

    Bài toán trở thành tìm \(x,y\) thỏa để \(M\left( {x;y} \right)\) đạt GTLN.

    Ta biểu diễn miền nghiệm của \(\left( * \right)\) trên mặt phẳng tọa độ như sau:

    Miền nghiệm là ngũ giác \(ACJIH\)

    Tọa độ các giao điểm \(A\left( {4;5} \right),C\left( {6;3} \right),J\left( {7;0} \right),I\left( {0;0} \right),H\left( {0;6} \right)\).

    \(M\left( {x;y} \right)\) sẽ đạt \(\max ,\min \) tại các điểm đầu mút nên thay tọa độ từng giao điểm vào tính \(M\left( {x;y} \right)\) ta được:

    \(M\left( {4;5} \right) = 640\); \(M\left( {6;3} \right) = 600,M\left( {7;0} \right) = 420,M\left( {0;0} \right) = 0,M\left( {0;6} \right) = 480\)

    Vậy \(\max M\left( {x;y} \right) = 640\) khi \(x = 4;y = 5 \Rightarrow T = 2{x^2} + {y^2} = 57\)

    Chọn C.

    Hãy suy nghĩ và trả lời câu hỏi trước khi montoan cung cấp đáp án và lời giải

    ADSENSE




  • Bài liên quan:

    1. Cho tứ diện \(ABCD\), gọi \({G_1},\,{G_2}\) lần lượt là trọng tâm các tam giác \(BCD\) và \(ACD\). Mệnh đề nào sau đây SAI?
    2. Cho hàm số sau \(y = {x^3} – 3x + 1\). Mệnh đề nào sau đây đúng? 
    3. Cho hình lăng trụ \(ABC.\,A'B'C'\) có thể tích bằng \(V\). Gọi \(M\) là trung điểm cạnh \(BB'\), điểm \(N\) thuộc cạnh \(CC'\) sao cho \(CN = 2C'N\). Tính thể tích khối chóp \(A.\,BCNM\) theo \(V\).
    4. Cho \(k,\,\,n\)\(\,(k
    5. Cho \(x;y\) là các số thực thỏa mãn \({\log _4}\left( {x + y} \right) + {\log _4}\left( {x – y} \right) \ge 1.\) Tìm giá trị nhỏ nhất của biểu thức \(P = 2x – y.\)
    6. Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} – 9x = m + 3\sqrt[3]{{9x + m}}\) có đúng hai nghiệm thực. Tính tổng các phần tử của \(S\).
    7. Ông \(A\) dự định sử dụng hết \(5{m^2}\) kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?
    8. Cho lăng trụ đều \(ABC.EFH\) có tất cả các cạnh bằng \(a\). Gọi \(S\) là điểm đối xứng của \(A\) qua \(BH\). Thể tích khối đa diện \(ABCSFH\) bằng
    9. Cho hình \(H\) là đa giác đều có \(24\) đỉnh. Chọn ngẫu nhiên \(4\) đỉnh của \(H.\) Tính xác suất sao cho \(4\) đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
    10. Giả sử hàm số \(y = f\left( x \right)\) liên tục, nhận giá trị dương trên \(\left( {0; + \infty } \right)\) và thỏa mãn \(f\left( 1 \right) = 1\), \(f\left( x \right) = f'\left( x \right)\sqrt {3x + 1} \), với mọi \(x > 0\). Mệnh đề nào sau đây đúng?

    Chuyên mục: Đề thi TN THPT môn Toán 2022Thẻ: Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Hoàng Hoa Thám

    Bài viết trước « Tính giá trị lớn nhất của biểu thức \(2M{A^2} + M{B^2}.\)
    Bài viết sau Biết kinh phí trồng hoa là \(150.000\) đồng/\(1{m^2},\) kinh phí để trồng cỏ là \(100.000\) đồng/\(1{m^2}.\) Hỏi nhà trường cần bao nhiêu tiền để trồng bồn hoa đó? (Số tiền làm tròn đến hàng chục nghìn) »

    Reader Interactions

    Trả lời Hủy

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    Sidebar chính




    MỤC LỤC

    • Tập hợp \(S\) tất cả các giá trị của m đề phương trình \(f\left( x \right) = m\) có đúng ba nghiệm thực là
    • Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội dương và \({u_2} = \frac{1}{4},\,{u_4} = 4.\) Giá trị của \({u_1}\) là
    • Giá trị nhỏ nhất của hàm số \(y = x{e^{x + 1}}\) trên \(\left[ { – 2;0} \right]\) bằng
    • Cho hình chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(a,\,SA \bot \left( {ABC} \right)\,,\,SA = 3a.\) Thể tích \(V\) của khối chóp \(S.ABCD\) là
    • Cho khối trụ có thể tích bằng \(45\pi \,c{m^3},\) chiều cao bằng \(5cm.\) Tính bán kính \(R\) của khối trụ đã cho.
    • Cho khối chóp tứ giác đều \(S.ABCD\) có thể tích bằng \({a^3}\) và đáy \(ABCD\) là hình vuông cạnh \(a.\) Tính \(\cos \alpha \) với \(\alpha \) là góc giữa mặt bên và mặt đáy.
    • Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right).\) Tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là điểm \(I\) với
    • Cho hàm số \(y = a{x^4} + b{x^2} + c{\rm{ }}\left( {a \ne 0} \right)\) có bảng biến thiên dưới đây: Tính \(P = a – 2b + 3c.\)
    • Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({\log _{\sqrt 2 }}(x – 1) = {\log _2}(mx – 8)\) có hai nghiệm thực phân biệt?
    • Mặt cầu có bán kính \(a\) thì có diện tích xung quanh bằng
    • Cho các dạng đồ thị (I), (II), (III) như hình dưới đây:Đồ thị hàm số \(y = {x^3} + b{x^2} – x + d{\rm{ }}\left( {b,d \in \mathbb{R}} \right)\) có thể là dạng nào trong các dạng trên?
    • Tìm tập xác định của hàm số sau \(y = \frac{1}{{1 – \ln x}}\). 
    • Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:Mệnh đề nào sau đây đúng?
    • Cho hình chóp tứ giác đều có tất cả các cạnh bằng \(2a.\) Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng \(\frac{{a\sqrt 6 }}{2}.\)
    • Gọi \({V_1}\) là thể tích của khối đa diện chứa đỉnh \(S\) và \({V_2}\) là thể tích khối đa diện còn lại. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}.\)
    • Để kịp thời đưa công trình vào sử dụng, công ty xây dựng quyết định từ tháng thứ \(2\), mỗi tháng tăng \(5\% \) khối lượng công việc so với tháng kề trước. Hỏi công trình sẽ hoàn thành ở tháng thứ mấy sau khi khởi công?
    • Cho hàm số \(f\left( x \right) = \frac{{x – {m^2}}}{{x + 8}}\) với \(m\) là tham số thực. Giả sử \({m_0}\) là giá trị dương của tham số \(m\) để hàm số có giá trị nhỏ nhất trên đoạn \(\left[ {0;3} \right]\) bằng \( – 3\). Giá trị \({m_0}\) thuộc khoảng nào trong các khoảng cho dưới đây?
    • Cho hình chóp S.ABC có đáy ABC là tam giác với \(AB = 2cm,AC = 3cm,\;\angle BAC = {60^0},SA \bot \left( {ABC} \right).\)Gọi \({B_1},{C_1}\) lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối cầu đi qua năm điểm \(A,B,C,{B_1},{C_1}.\)
    • Hàm số \(f(x) = {2^{2x}}\) có đạo hàm
    • Tìm tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(f\left( x \right) = m\) có đúng hai nghiệm.
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2022 - Học toán và Trắc nghiệm Toán online.