• Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
Bạn đang ở:Trang chủ / Đề thi TN THPT môn Toán 2022 / Gọi \(S\)là diện tích đáy, \(h\)là chiều cao. Thể tích khối lăng trụ là.

Gọi \(S\)là diện tích đáy, \(h\)là chiều cao. Thể tích khối lăng trụ là.

04/07/2022 //  by admin//  Để lại bình luận




  • Câu hỏi:

    Gọi \(S\)là diện tích đáy, \(h\)là chiều cao. Thể tích khối lăng trụ là.


    • A.
      \(V = \dfrac{1}{3}S.h\)       

    • B.
      \(V = \dfrac{1}{6}S.h\)       

    • C.
      \(V = S.h\)  

    • D.
      \(V = \dfrac{1}{2}S.h\) 

    Lời giải tham khảo:

    Đáp án đúng: C

    Thể tích khối lăng trụ có chiều cao h và bán kính đáy S là : \(V = Sh\).

    Chọn C.

    Hãy suy nghĩ và trả lời câu hỏi trước khi montoan cung cấp đáp án và lời giải

    ADSENSE




  • Bài liên quan:

    1. Thực hiện tính thể tích \(V\;\)của khối chóp có đáy là hình vuông cạnh \(2a\) và chiều cao là \(3a\)
    2. Cho hàm số \(y = f\left( x \right)\)liên tục trên đoạn \(\left[ { – 1;4} \right]\) và có đồ thị hàm số \(y = f'\left( x \right)\) như hình bên. Hỏi hàm số \(g\left( x \right) = f\left( {{x^2} + 1} \right)\) nghịch biến trên khoảng nào trong các khoảng sau?
    3. Để giá trị lớn nhất của hàm số \(y = \left| {\sqrt {2x – {x^2}} – 3m + 4} \right|\) đạt giá trị nhỏ nhất thì m thỏa.
    4. Khoảng cách từ \(I(1; – 2)\) đến đường thẳng \(\Delta :3x – 4y – 26 = 0\) bằng.
    5. Hàm số \(y = – {x^3} – 3{x^2} + 9x + 20\) đồng biến trên các khoảng.
    6. Phương trình \(\cos x = \cos \dfrac{\pi }{3}\) có nghiệm là:
    7. Giá trị cực tiểu của hàm số \(y = {x^4} – 2{x^2} – 3\)là.
    8. Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), cạnh bên \(SA\) vuông góc với đáy \(\left( {ABCD} \right)\).
    9. Chọn câu đúng. Thể tích khối lăng trụ tam giác đều có tất cả các cạnh bằng a là.
    10. Hàm số \(y = \dfrac{{2x – 1}}{{x + 1}}\). Khẳng định nào sau đây đúng.

    Chuyên mục: Đề thi TN THPT môn Toán 2022Thẻ: Đề thi thử THPT QG năm 2022 môn Toán Trường THPT Thanh Xuân

    Bài viết trước « Cho biết có 4 điểm A, B, C, D, trong đó không có ba điểm nào thẳng hàng, lấy 2 điểm từ 4 điểm đã cho để vẽ một đoạn thẳn
    Bài viết sau Phân tích đa thức sau thành nhân tử (2x^3+3x^2y+2xy) »

    Reader Interactions

    Trả lời Hủy

    Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

    Sidebar chính




    MỤC LỤC

    • Trong không gian Oxyz, cho mặt cầu (S) tâm I (9; 3; 1) bán kính bằng 3. Gọi M, N là bài điểm lần lượt thuộc hai trục Ox, Oz sao cho đường thẳng MN tiếp xúc với (S), đồng thời mặt cầu ngoại tiếp tứ diện OIMN có bán kinh bằng \(\frac{13}{2}\). Gọi A là tiếp điểm của MN và (S), giá trị AM.AN bằng
    • Có bao nhiều giá trị nguyên âm của tham số a để hàm số \(y=\left| {{x}^{4}}+a{{x}^{2}}-8x \right|\) có đúng ba điểm cực trị?
    • Trong không gian Oxyz, cho điểm A(1; 2; 2) Gọi (P) là mặt phẳng chứa trục Ox sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
    • Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, cạnh bên \(\text{AA}’=2a\), góc giữa hai mặt phẳng \(\left( \text{A}’BC \right)\) và (ABC) bằng 30%. Thể tích của khối lăng trụ đã cho bằng
    • Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 3. Gọi (S) là mặt cầu đi qua đỉnh chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
    • Có bao nhiêu số phức z thỏa mãn \(\left| {{Z}^{2}} \right|=\left| Z-\overline{Z} \right|\) và \(\left| \left( Z-2 \right)\left( \overline{Z}-2i \right) \right|={{\left| Z+2i \right|}^{2}}\)?
    • Xét tất cả các số thực x, y sao cho \({{25}^{5-{{y}^{2}}}}\ge {{a}^{6x-{{\log }_{3}}}}^{{{a}^{3}}}\) với mọi số thực dương a. Giá trị nhỏ nhất của biểu thức \(P={{x}^{2}}+{{y}^{2}}-4x+8y\) bằng
    • Cho hàm số bậc bốn y = f(x) Biết rằng hàm số \(g(x)=\ln (f(x))\) có bảng biển thiên như sau:Diện tích hình phẳng giới hạn bởi các đường \(y=f’\left( x \right)\) và \(y=g’\left( x \right)\) thuộc khoảng nào dưới đây?
    • Cho các số phức \({{Z}_{1}},{{Z}_{2}},{{Z}_{3}}\) thỏa mãn \(2\left| {{Z}_{1}} \right|=2\left| {{Z}_{2}} \right|=\left| {{Z}_{3}} \right|=2\) và \(\left( {{Z}_{1}}+{{Z}_{2}} \right){{Z}_{3}}=3{{Z}_{1}}{{Z}_{2}}\) Gọi A, B, C lần lượt là các điểm biểu diễn của \({{Z}_{1}},{{Z}_{2}},{{Z}_{3}}\) trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng
    • Biết F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên R và \(\int\limits_{0}^{4}{f\left( x \right)dx=F(4)-G(0)+a}\) (a > 0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F(x) y = G(x) x = 0 và x = 4. Khi S = 8 thì a bằng
    • Cho hàm số \(f\left( x \right) = a{x^4} + 2\left( {a + 4} \right){x^2}–1\) với a là tham số thực. Nếu \(\underset{\left[ 0;2 \right]}{\mathop{\max }}\,f\left( x \right)=f\left( 1 \right)\) thì \(\underset{\left[ 0;2 \right]}{\mathop{\min }}\,f\left( x \right)\) bằng
    • Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thảo mãn \(({4^b} – 1)(a{.3^{b\;\;}} – 10) < 0\)?
    • Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30;50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
    • Cho hàm số \(f\left( x \right) = a{x^4} + b{x^2} + c\) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên thuộc đoạn [-2;5] của tham số m để phương trình f(x) = m có 2 nghiệm thực phân biệt?
    • Trong không gian Oxyz, cho điểm A(1; 2; 3). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng x – 2y + 2z + 3 = 0 là:
    • Cho hình lập phương ABCD.A’B’C’D’ (tham khảo hình bên). Gía trị sin của góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng
    • Trong không gian Oxyz, cho điểm M(2; -2; 1) và mặt phẳng \((P):2x-3y-z+1=0\). Đường thẳng đi qua M và vuông góc với (P) có phương trình là:
    • Cho hàm số \(f\left( x \right)=1+{{e}^{2x}}\). Khẳng định nào dưới đây đúng?
    • Gọi \({z_1},{\rm{ }}{z_2}\) là hai nghiệm phức của chương trình \({{z}^{2}}-2z+5=0\). Khi đó \(z_{1}^{2}+z_{2}^{2}\) bằng
    • Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f’\left( x \right)=x+1\) với mọi \(x\in R\). Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2022 - Học toán và Trắc nghiệm Toán online.
    Hocz - Học Trắc nghiệm - Sách toán - Lop 12 - Hoc giai.