Câu hỏi:
Cho hàm số \(y=f\left( x \right)\) liên tục trên R và thỏa mãn \(\int\limits_{{}}^{{}}{f\left( x \right)dx}=4{{x}^{3}}-3{{x}^{2}}+2x+C\). Hàm số \(f\left( x \right)\) là hàm số nào trong các hàm số sau?
-
A.
\(f\left( x \right)=12{{x}^{2}}-6x+2+C\) -
B.
\(f\left( x \right)=12{{x}^{2}}-6x+2\) -
C.
\(f\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+Cx\) -
D.
\(f\left( x \right)={{x}^{4}}-{{x}^{3}}+{{x}^{2}}+Cx+C’\)
Lời giải tham khảo:
Đáp án đúng: B
\(f\left( x \right)=\left( \int\limits_{{}}^{{}}{f\left( x \right)dx} \right)’=12{{x}^{2}}-6x+2\)
Chọn B.
Trả lời