Câu hỏi:
Xếp 10 quyển sách tham khảo khác nhau gồm: 1 quyển sách Văn, 3 quyển sách tiếng Anh và 6 quyển sách Toán thành một hàng ngang trên giá sách. Tính xác suất để mỗi quyển sách tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển Toán T1 và Toán T2 luôn được xếp cạnh nhau.
-
A.
\(\frac{1}{450}\) -
B.
\(\frac{1}{600}\) -
C.
\(\frac{1}{300}\) -
D.
\(\frac{1}{210}\)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT năm 2021 môn Toán lớp 12
Đáp án đúng: D
Xếp 10 quyển sách thành một hàng ngang trên giá sách có: \({{n}_{\Omega }}=10!\) cách xếp.
Gọi biến cố A: “Sắp xếp 10 quyển sách đã cho thành hàng ngang sao cho mỗi quyển sách tiếng Anh đều được xếp ở giữa hai quyển sách Toán, đồng thời hai quyển sách Toán T1 và Toán T2 luôn được xếp cạnh nhau”.
Sắp xếp 2 quyển sách Toán T1 và Toán T2 có: 2! cách.
Sắp xếp 6 quyển sách Toán sao cho hai quyển Toán T1 và Toán T2 cạnh nhau có: 2!.5! cách xếp.
Khi đó ta có 4 vị trí để sắp xếp 3 quyển sách sao cho sách tiếng Anh ở giữa hai quyển Toán và 3 cách xếp quyển tiếng Anh.
\(\Rightarrow {{n}_{A}}=2!.5!.\left( C_{4}^{3}.3! \right).3=17280\)
\(\Rightarrow P\left( A \right)=\frac{{{n}_{A}}}{{{n}_{\Omega }}}=\frac{17280}{10!}=\frac{1}{210}.\)