• Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề Toán TN
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Search
Bạn đang ở:Trang chủ / Đề thi TN THPT môn Toán 2021 / Xác định tham số thực m để phương trình \({{x}^{2}}+{{y}^{2}}-4x+4y+8-m=0\) có nghiệm duy nhất \(\left( x;y \right)\) thỏa mãn bất phương trình \(\log _{{{x}^{2}}+{{y}^{2}}+2}^{{}}\left( 2x+2y+4 \right)\ge 1\).

Xác định tham số thực m để phương trình \({{x}^{2}}+{{y}^{2}}-4x+4y+8-m=0\) có nghiệm duy nhất \(\left( x;y \right)\) thỏa mãn bất phương trình \(\log _{{{x}^{2}}+{{y}^{2}}+2}^{{}}\left( 2x+2y+4 \right)\ge 1\).

01/05/2021 //  by admin




  • Câu hỏi:

    Xác định tham số thực m để phương trình \({{x}^{2}}+{{y}^{2}}-4x+4y+8-m=0\) có nghiệm duy nhất \(\left( x;y \right)\) thỏa mãn bất phương trình \(\log _{{{x}^{2}}+{{y}^{2}}+2}^{{}}\left( 2x+2y+4 \right)\ge 1\).


    • A.
      \(\sqrt {10}  – \sqrt 2 .\)

    • B.
      \({\left( {\sqrt {10}  – \sqrt 2 } \right)^2}.\)

    • C.
      \(\sqrt {10}  + \sqrt 2 .\)

    • D.
      \({\left( {\sqrt {10}  – 2} \right)^2}.\)
     

    Lời giải tham khảo:

    Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
    Đề thi thử TN THPT năm 2021 môn Toán lớp 12
    Đáp án đúng: D

    \(\log _{{x^2} + {y^2} + 2}^{}\left( {2x + 2y + 4} \right) \ge 1\left( 1 \right) \Leftrightarrow 2x + 2y + 4 \ge {x^2} + {y^2} + 2 \Leftrightarrow {\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} \le 4\left( 1 \right)\)

    Tập hợp các điểm \(\left( x;y \right)\) thỏa (1) là hình tròn tâm \({{I}_{1}}\left( 1;1 \right)\), bán kính \({{R}_{1}}=2.\)

    \({{x}^{2}}+{{y}^{2}}-4x+4y+8-m=0\Leftrightarrow {{\left( x-2 \right)}^{2}}+{{\left( y+2 \right)}^{2}}=m\left( 2 \right)\Rightarrow m>0\)

    Tập hợp các điểm \(\left( x;y \right)\) thỏa (2) là đường tròn tâm I2( 2;-2) bán kính R2 = \(\sqrt m\)

    Để PT có nghiệm duy nhất thỏa mãn BPT  thì \({{I}_{1}}{{I}_{2}}={{R}_{1}}+{{R}_{2}}\Leftrightarrow \sqrt{10}=\sqrt{m}+2\Leftrightarrow m={{\left( \sqrt{10}-2 \right)}^{2}}.\)

    Montoan.com xin giới thiệu Bộ đề thi thử TN THPT môn Toán năm 2021, bộ đề thi được tổng hợp từ nhiều trường khác nhau sẽ giúp cho các em củng cố kiến thức thức đã học một cách có hệ thống, đồng thời rèn luyện kỹ năng giải đề để từ đó đạt điểm số thật cao trong kì thi sắp đến.
    Để có thêm nguồn tư liệu phong phú trong quá trình ôn luyện cho kì thi thử TN THPT QG 2021 sắp tới, xin chia sẻ đến các em Bộ đề thi thử TN THPT Toán năm 2021. Đề có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân nhằm có kế hoạch ôn luyện tốt hơn.
    Chúc các em thành công và đạt kết quả cao trong bài thi!

    ===***===




  • Bài liên quan:

    1. Trong không gian Oxyz cho tứ diện ABCD, với \(A\left( 1;2;5 \right),B\left( -1;2;7 \right), C\left( 4;2;2 \right),D\left( 0;6;-10 \right).\) Hai điểm P;Q di động trong không gian thỏa mãn PA=QB,PB=QC,PC=QD,PD=QA. Biết rằng mặt phẳng trung trực của đoạn PQ luôn đi qua điểm cố định có tọa độ \(\left( a;b;c \right)\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}.\)
    2. Cho hàm số \(f\left( x \right)\) có đồ thị như hình vẽ sau: Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để đồ thị hàm số \(y=\frac{{{x}^{2}}+1}{\left( x-1 \right)\left[ {{f}^{2}}\left( x \right)-mf\left( x \right) \right]}\) có 5 đường tiệm cận đứng. Tính tổng các phần tử của tập S.
    3. Cho hai số thực x, y thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức \(S = x – \left| y \right|.\)
    4. Có bao nhiêu giá trị nguyên của tham số thực m để phương trình \(4{{\cos }^{4}}x-8{{\cos }^{2}}x-m+1=0\) có 3 nghiệm thực phân biệt thuộc đoạn \(\left[ 0;\frac{3\pi }{2} \right]?\)
    5. Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 0;\frac{\pi }{6} \right].\) Biết \(F\left( x \right)=\sin x\) là một nguyên hàm của hàm số \(\frac{f\left( x \right)}{{{\cos }^{2}}2x}\). Tính \(I=\int\limits_{0}^{\frac{\pi }{6}}{{{f}^{/}}\left( x \right)\tan 2xdx}.\)
    6. Cho hình nón có chiều cao bằng 2a. Thiết diện đi qua đỉnh của hình nón cách tâm đường tròn đáy của hình nón một khoảng bằng a là một tam giác đều. Tính thể tích của khối nón giới hạn bởi hình nón đã cho.
    7. Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ sau. Khẳng định nào sau đây đúng?
    8. Các nhà khoa học đã tính toán được rằng khi nhiệt độ trung bình của trái đất tăng thêm \({{2}^{0}}C\) thì mực nước biển tăng lên 0,03(m). Nếu nhiệt độ tăng lên \({{5}^{0}}C\) thì mực nước biển tăng lên 0,1(m) và người ta đưa ra công thức tổng quát như sau: Nếu nhiệt độ trung bình của trái đất tăng lên \({{t}^{0}}C\) thì nước biển dâng lên \(f\left( t \right)=k.{{a}^{t}}\left( m \right)\) trong đó k,a là hằng số dương. Hỏi nếu mực nước biển tăng lên 0,2 (m) thì nhiệt độ trung bình của trái đất khi đó tăng lên gần với số nào nhất trong các số sau?
    9. Số các giá trị nguyên dương của tham số m để hàm số \(y=\frac{mx-4}{x-m}\) nghịch biến trên khoảng \(\left( 4;+\infty \right)\) là
    10. Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a. \(SA\bot \left( ABCD \right)\) và \(SA=a\sqrt{7}.\) Tính khoảng cách giữa hai đường thẳng SB và AC.

    Chuyên mục: Đề thi TN THPT môn Toán 2021Thẻ: Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Tây Trà

    Bài viết trước « Trong không gian Oxyz cho tứ diện ABCD, với \(A\left( 1;2;5 \right),B\left( -1;2;7 \right), C\left( 4;2;2 \right),D\left( 0;6;-10 \right).\) Hai điểm P;Q di động trong không gian thỏa mãn PA=QB,PB=QC,PC=QD,PD=QA. Biết rằng mặt phẳng trung trực của đoạn PQ luôn đi qua điểm cố định có tọa độ \(\left( a;b;c \right)\). Tính \({{a}^{2}}+{{b}^{2}}+{{c}^{2}}.\)
    Bài viết sau Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)? »

    Sidebar chính




    MỤC LỤC

    • Trong không gian Oxyz, Cho hai điểm A(1; -3; 2) và B(-2; 1; -3). Xét hai điểm M và N thay đổi thuộc mặt phẳng (Oxy) sao cho MN = 1. Giá trị lớn nhất của \(\left| AM-BN \right|\) bằng
    • Có hàm số y = f(x) có đạo hàm f’(x) = (x – 8)(x2 – 9), \(\forall x\in R\). Có bao nhiêu giá trị nguyên dương của tham số m để hàm số \(g(x)=f\left( \left| {{x}^{3}}+6x \right|+m \right)\) có ít nhất 3 điểm cực trị
    • Có bao nhiêu số nguyên y sao cho tồn tại \(x\in \left( \frac{1}{3};4 \right)\) thỏa mãn \({{27}^{3{{x}^{2}}+xy}}=(1+xy){{27}^{12x}}\)?
    • Trong không gian Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{1}=\frac{z-1}{2}\) và mặt phẳng (P): 2x + y – z + 3 = 0. Hình chiếu vuông góc của d lên (P) là đường thẳng có phương trình:
    • Cắt hình nón (N) bởi mặt phẳng đi qua đỉnh và tạo mặt phẳng chứa đáy một góc bằng 600, ta được thiết diện là tam giác đều cạnh 2a. Diện tích xung quanh của (N) bằng
    • Cho hàm số f(x) = x3 + ax2 + bx + c với a, b, c là các số thực. Biết hàm số g(x) = f(x) + f’(x) có hai giá trị cực trị là -4 và 2. Diện tích hình phẳng giới hạn bới các đường \(y=\frac{f(x)}{g(x)+6}\) và y = 1 bằng
    • Xét các số phức z, w thỏa mãn \(\left| z \right|=1\) và \(\left| \text{w} \right|=2\). Khi \(\left| z+i\overline{\text{w}}+6-8i \right|\) đạt giá trị nhỏ nhất, \(\left| z-\text{w} \right|\) bằng
    • Trên tập hợp các số phức, xét phương trình z2 – 2(m + 1)z + m2 = 0 (m là tham số). Có bao nhiêu giá trị của m để phương trình đó có nghiệm z0 thỏa mãn \(\left| {{z}_{0}}=5 \right|\)
    • Cho khối hộp chữ nhật ABCD.A’B’C’D’ có đáy là hình vuông, BD = 4a, góc giữa hai mặt phẳng (A’BD) và (ABCD) bằng 300. Thể tích của khối hộp chữ nhật đã cho bằng
    • Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.
    • Giả sử F là nguyên hàm của f trên R thỏa mãn F(0)=2. Giá trị của F(-1) + 2F(2) bằng
    • Có bao nhiêu số nguyên x thỏa mãn \(\left( {{3}^{{{x}^{2}}}}-{{9}^{x}} \right)\left[ {{\log }_{2}}(x+30)-5 \right]\le 0\)?
    • Trong không gian Oxyz, cho điểm M(2;1;-1) và mặt phẳng (P):x – 3y + 2z + 1 = 0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là:
    • Nếu \(\int\limits_{0}^{2}{g(x)dx}=3\) thì \(\int\limits_{0}^{2}{\left[ 2f(x)-1 \right]dx}\) bằng
    • Cho số phức z thỏa mãn iz = 6 + 5i. Số phức liên hợp của z là:
    • Từ một hộp chứ 10 quả bóng gồm 4 quả màu đỏ và 6 quả màu xanh, lấy ngẫu nhiên đồng thời ba quả. Xác suất để lấy được 3 quả màu xanh bằng:
    • Trên đoạn \(\left[ -2;1 \right]\), hàm số y = x3 – 3×2 – 1 đạt giá trị lớn nhất tại điểm
    • Cho hình lăng trụ đứng ABC. A’B’C’ có tất cả các cạnh bằng nhau (yjam khảo hình bên). Góc giữa hai đường thẳng AA’ và B’C bằng:
    • Trong không gian Oxyz, cho hái điểm A(0;0;1) và B(2;1;3). Mặt phẳng đi qua A và vuông góc với AB có phương trình là:
    • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại C, AC = 3a và SA vuông gốc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng (SAC) bằng
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2022 - Học toán và Trắc nghiệm Toán online.
    Hocz - Học Trắc nghiệm - Sách toán - Lop 12 - Hoc giai.