Câu hỏi:
Tìm tất cả các đường tiệm cận ngang của đồ thị hàm số \(y=\frac{\left| x \right|}{\sqrt{{{x}^{2}}-1}}.\)
-
A.
\(y=1;y=-1\) -
B.
Không có tiệm cận ngang -
C.
\(y=1\) -
D.
\(y=-1\)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT năm 2021 môn Toán lớp 12
Đáp án đúng: C
TXÐ: \(D=\left( -\infty ;-1 \right)\cup \left( 1;+\infty \right).\)
Ta có:
\(\underset{x\to +\infty }{\mathop{\lim }}\,y=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{\left| x \right|}{\sqrt{{{x}^{2}}-1}}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{x}{\sqrt{{{x}^{2}}-1}}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{1}{\sqrt{1-\frac{1}{{{x}^{2}}}}}=1\)
\(\underset{x\to -\infty }{\mathop{\lim }}\,y=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{\left| x \right|}{\sqrt{{{x}^{2}}-1}}=\underset{x\to -\infty }{\mathop{\lim }}\,\frac{-x}{\sqrt{{{x}^{2}}-1}}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{-1}{-\sqrt{1-\frac{1}{{{x}^{2}}}}}=1\)
Vậy đồ thị hàm số đã cho có 1 TCN \(y=1.\)