Câu hỏi:
Một khối gỗ hình lập phương có thể tích \({{V}_{1}}\). Một người thợ mộc muốn gọt giũa khối gỗ đó thành một khối trụ có thể tích là \({{V}_{2}}\). Tính tỉ số lớn nhất \(k=\frac{{{V}_{2}}}{{{V}_{1}}}\)?
-
A.
\(k = \frac{\pi }{4}\) -
B.
\(k = \frac{2}{\pi }\) -
C.
\(k = \frac{\pi }{2}\) -
D.
\(k = \frac{4}{\pi }\)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT năm 2021 môn Toán lớp 12
Đáp án đúng: C
Gọi a là cạnh của hình lập phương, khi đó thể tích của hình lập phương là \({{V}_{1}}={{a}^{3}}\). Khi đó tỉ số \(\frac{{{V}_{2}}}{{{V}_{1}}}\) lớn nhất khi và chỉ khi \({{V}_{2}}\) lớn nhất.
Khi đó hình trụ có chiều cao bằng cạnh của hình lập phương và có đường tròn đáy nội tiếp một mặt của hình lập phương.
\(\Rightarrow h=a,r=\frac{a}{2}\)
Khi đó \({{V}_{2}}=\pi {{r}^{2}}h=\pi {{\left( \frac{a}{2} \right)}^{2}}.a=\frac{\pi {{a}^{3}}}{2}\)
Vậy \(k=\frac{{{V}_{2}}}{{{V}_{1}}}=\frac{\pi }{2}\).