Câu hỏi:
Cho lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác đều cạnh a. Mặt phẳng \(\left( AB’C’ \right)\) tạo với mặt phẳng \(\left( ABC \right)\)một góc 60o. Thể tích khối lăng trụ \(ABC.A’B’C’\) bằng
-
A.
\(\frac{{{a}^{3}}\sqrt{3}}{2}\) -
B.
\(\frac{3{{a}^{3}}\sqrt{3}}{4}\) -
C.
\(\frac{{{a}^{3}}\sqrt{3}}{8}\). -
D.
\(\frac{3{{a}^{3}}\sqrt{3}}{8}\)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT năm 2021 môn Toán lớp 12
Đáp án đúng: D
Gọi \(H,H’\) lần lượt là trung điểm của \(BC,B’C’.\)
Do lăng trụ đứng \(ABC.A’B’C’\) có đáy là tam giác đều cạnh \(a\) nên \(AH=\frac{a\sqrt{3}}{2}\) và \({{S}_{\Delta A’B’C’}}=\frac{{{a}^{2}}\sqrt{3}}{4}\)
Ta có: \(\left( \left( AB’C’ \right),\left( ABC \right) \right)=\left( AH,AH’ \right)=\angle H’AH={{60}^{0}}.\)
Xét tam giác \(H’HA\) vuông tại \(H\) có \(\tan {{60}^{0}}=\frac{H’H}{AH}\Leftrightarrow H’H=AH.\tan {{60}^{0}}=\frac{a\sqrt{3}}{2}.\sqrt{3}=\frac{3}{2}a\)
Mà \(A’A=H’H\) nên \(A’A=\frac{3}{2}a.\)
Vậy \({{V}_{ABC.A’B’C’}}=A’A.{{S}_{\Delta A’B’C’}}=\frac{3}{2}a.\frac{{{a}^{2}}\sqrt{3}}{4}=\frac{3\sqrt{3}}{8}{{a}^{3}}.\)