Câu hỏi:
Cho hàm số f(x) liên tục trên R và có \(\int\limits_0^2 {f\left( x \right)} {\rm{d}}x = 9;\int\limits_2^4 {f\left( x \right)} {\rm{d}}x = 4\). Tính \(I = \int\limits_0^4 {f\left( x \right)} {\rm{d}}x\)?
-
A.
\(I = \frac{9}{4}\) -
B.
I = 36 -
C.
I = 13 -
D.
I = 5
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT năm 2021 môn Toán lớp 12
Đáp án đúng: C
\(\int\limits_0^4 {f\left( x \right){\rm{d}}x} = \int\limits_0^2 {f\left( x \right)} {\rm{d}}x + \int\limits_2^4 {f\left( x \right)} {\rm{d}}x = 9 + 4 = 13\)
YOMEDIA