Câu hỏi:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và hàm số y=f'(x) có đồ thị như hình vẽ. Đặt hàm số \(g\left( x \right)=f\left( 2x-1 \right)-2x+1\). Giá trị lớn nhất của hàm số \(g\left( x \right)\) trên đoạn \(\left[ 0;1 \right]\) bằng
-
A.
f(1) – 1 -
B.
f(-1) + 1 -
C.
\(f\left( {\frac{1}{2}} \right) – \frac{1}{2}\) -
D.
f(0)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi thử TN THPT năm 2021 môn Toán lớp 12
Đáp án đúng: D
Ta có \({g}’\left( x \right)=2{f}’\left( 2x-1 \right)-2\)
Cho \({g}’\left( x \right)=0\Leftrightarrow 2{f}’\left( 2x-1 \right)-2=0\Leftrightarrow {f}’\left( 2x-1 \right)=1\)
Dựa vào đồ thị hàm số \(y={f}’\left( x \right)\) ta thấy trên đoạn \(\left[ 0;1 \right]\) đường thẳng y=1 cắt đồ thị hàm số \(y={f}’\left( x \right)\) tại x=0
Do đó \({f}’\left( 2x-1 \right)=1\Leftrightarrow 2x-1=0\Leftrightarrow x=\frac{1}{2}\)
BBT
Từ BBT giá trị lớn nhất của hàm số \(y=g\left( x \right)\) trên đoạn \(\left[ 0\,;\,1 \right]\) là \(f\left( 0 \right)\)