Câu hỏi:
Cho khối lăng trụ \(ABC.A’B’C’\) có thể tích là \(V,\) khối chóp \(A’.BCC’B’\) có thể tích là \({V_1}.\) Tỉ số \(\dfrac{{{V_1}}}{V}\) bằng
-
A.
\(\dfrac{3}{4}.\) -
B.
\(\dfrac{1}{2}.\) -
C.
\(\dfrac{3}{5}.\) -
D.
\(\dfrac{2}{3}.\)
Lời giải tham khảo:
Đáp án đúng: D
Gọi \({V_2}\) là thể tích của khối tứ diện \(A’ABC\). Ta có \({V_1} + {V_2} = V \Leftrightarrow {V_1} = V – {V_2}\).
Mà \({V_2} = \dfrac{1}{3}d\left( {A’,\left( {ABC} \right)} \right).S = \dfrac{V}{3}\); với \(S\) là diện tích của tam giác \(ABC\).
Vậy \({V_1} = \dfrac{{2V}}{3}\) . Do đó \(\dfrac{{{V_1}}}{V} = \dfrac{2}{3}\).
Đáp án D
Trả lời