Câu hỏi:
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) (với \(a,\,b,\,c,\,d \in \mathbb{R}\)) có đồ thị như hình bên. Khẳng định nào dưới đây đúng?
-
A.
\(a > 0,\,b > 0,\,c = 0,\,d > 0\) -
B.
\(a > 0,\,b > 0,\,c = 0,\,d < 0\) -
C.
\(a > 0,\,b = 0,\,c < 0,\,d > 0\) -
D.
\(a > 0,\,b = 0,\,c < 0,\,d < 0\)
Lời giải tham khảo:
Đáp án đúng: B
Từ đồ thị hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \Rightarrow a > 0\)
Đồ thị hàm số cắt trục tung tại điểm có tung độ âm nên \(d < 0\)
\(\begin{array}{l}f\left( x \right) = a{x^3} + b{x^2} + cx + d\\ \Rightarrow f’\left( x \right) = 3a{x^2} + 2bx + c\end{array}\)
Hàm số có 2 điểm cực trị \({x_1};\,{x_2}\) nên \({x_1};\,\,{x_2}\) là 2 nghiệm phân biệt của phương trình \(f’\left( x \right) = 0\). Do đó,
\(\left\{ \begin{array}{l}{x_1} + {x_2} = – \dfrac{{2b}}{{3a}}\\{x_1}.{x_2} = \dfrac{c}{{3a}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\dfrac{{ – 2b}}{{3a}} < 0\\\dfrac{c}{{3a}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a > 0\\b > 0\\c = 0\end{array} \right.\)
Vậy \(a > 0,\,\,b > 0,\,\,c = 0,\,\,d < 0\)
Đáp án B
Trả lời