• Toán 12
  • Toán 11
  • Toán 10
  • Đề thi Toán
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

Header Right

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề thi Toán
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
Bạn đang ở:Trang chủ / Đề thi giữa HK2 môn Toán 12 / Cho điểm \(I\left( {1;1; – 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y – 3}}{2} = \dfrac{{z – 2}}{1}\). Phương trình mặt cầu \(\left( S \right)\)có

Cho điểm \(I\left( {1;1; – 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y – 3}}{2} = \dfrac{{z – 2}}{1}\). Phương trình mặt cầu \(\left( S \right)\)có

20/03/2021 //  by admin




  • Câu hỏi:

    Cho điểm \(I\left( {1;1; – 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y – 3}}{2} = \dfrac{{z – 2}}{1}\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d  tại hai điểm A, B sao cho \(\widehat {IAB} = {30^o}\) là:


    • A.
      \({\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 72.\)

    • B.
      \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 36.\)

    • C.
      \({\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 66.\)

    • D.
      \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 46.\)
     

    Lời giải tham khảo:

    Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
    Đề thi Giữa HK2 năm 2021 môn Toán lớp 12

    Đáp án đúng: A

    Đường thẳng \(d\) đi qua \(M\left( { – 1;{\rm{ 3}};2} \right)\)và có vectơ chỉ phương \(\overrightarrow u  = \left( {1;\,2;\,1} \right)\).

    Gọi H là hình chiếu của I trên D. Ta có: \(IH = d\left( {I;AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {MI} } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \sqrt {18} \).

    \( \Rightarrow R = IA = 2\sqrt {18} \).

    Vậy phương trình mặt cầu là: \({\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 72.\)

    Montoan.com xin giới thiệu Bộ đề thi giữa HK2 môn Toán 12 năm 2021, bộ đề thi được tổng hợp từ nhiều trường khác nhau sẽ giúp cho các em củng cố kiến thức thức đã học một cách có hệ thống, đồng thời rèn luyện kỹ năng giải đề để từ đó đạt điểm số thật cao trong kì thi sắp đến.
    Để có thêm nguồn tư liệu phong phú trong quá trình ôn luyện cho kì thi GHK2 sắp tới, xin chia sẻ đến các em Bộ đề thi tốt nghiệp THPT môn GDCD năm 2021. Đề có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân nhằm có kế hoạch ôn luyện tốt hơn.
    Chúc các em thành công và đạt kết quả cao trong bài thi!

    YOMEDIA




  • Bài liên quan:

    1. Ba đỉnh của một hình bình hành có tọa độ là\(\left( {1;1;1} \right),\,\left( {2;3;4} \right),\,\left( {7;7;5} \right)\). Diện tích của hình bình hành đó
    2. Phương trình mặt cầu có tâm \(I\left( {\sqrt 5 ;3;9} \right)\) và tiếp xúc trục hoành là:
    3. Phương trình mặt cầu có tâm \(I\left( {3;\sqrt 3 ; – 7} \right)\) và tiếp xúc trục tung là:
    4. Cho điểm \(I\left( {1;1; – 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y – 3}}{2} = \dfrac{{z – 2}}{1}.\) Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:
    5. Cho các điểm \(I\left( {1;1; – 2} \right)\) và đường thẳng \(d:\left\{ \begin{array}{l}x = – 1 + t\\y = 3 + 2t\\z = 2 + t\end{array} \right.\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:
    6. Trong không gian với hệ trục tọa độ \(Oxyz\), cho tứ diện \(ABCD\) có các đỉnh \(A\left( {1;2;1} \right)\), \(B\left( { – 2;1;3} \right)\), \(C\left( {2; – 1;3} \right)\) và \(D\left( {0;3;1} \right)\). Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \(A,B\) đồng thời cách đều \(C,D\)
    7. Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;1;1), B(0;2;2) đồng thời cắt các tia Ox, Oy lần lượt tại hai điểm M, N (không trùng với gốc tọa độ\(O\)) sao cho OM = 2ON
    8. Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1). Viết phương trình mặt phẳng (P) cắt các trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O sao cho N là tâm đường tròn ngoại tiếp tam giác ABC.
    9. Trong không gian với hệ trục toạ độ Oxyz, cho mặt cầu , điểm . Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất ?
    10. Trong không gian với hệ trục tọa độ \(Oxyz\), cho điểm \(M(1;2;3).\) Gọi \((\alpha )\) là mặt phẳng chứa trục \(Oy\) và cách \(M\) một khoảng lớn nhất. Phương trình của \((\alpha )\) là:

    Chuyên mục: Đề thi giữa HK2 môn Toán 12Thẻ: Đề thi giữa HK2 môn Toán 12 năm 2021 - Trường THPT Phan Ngọc Hiển

    Bài viết trước « Cho điểm \(I\left( {1;1; – 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y – 3}}{2} = \dfrac{{z – 2}}{1}.\) Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều là:
    Bài viết sau Phương trình mặt cầu có tâm \(I\left( {3;\sqrt 3 ; – 7} \right)\) và tiếp xúc trục tung là: »

    Sidebar chính




    MỤC LỤC

    • Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\) là mặt phẳng qua \(G\left( {1;2;3} \right)\) và cắt các trục \(Ox,Oy,Oz\) lần lượt tại các điểm \(A,B,C\) (khác gốc \(O\)) sao cho \(G\) là trọng tâm của tam giác \(ABC\). Khi đó mặt phẳng \(\left( \alpha \right)\) có phương trình:
    • Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x – 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; – 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
    • Trong không gian với hệ toạ độ \(Oxyz\),cho hai đường thẳng \({d_1},{d_2}\)lần lượt có phương trình
    • Tìm \(I = \int {\dfrac{{{{\cos }^3}x}}{{1 + \sin x}}\,dx} \).
    • Một vật chuyển động với vận tốc \(v(t) = 1,2 + \dfrac{{{t^2} + 4}}{{1 + 3}}\,\,\,(m/s)\). Quãng đường vật đi được sau 4s xấp xỉ bằng :
    • Cho hai hàm số \(f(x) = {x^2},\,\,g(x) = {x^3}\). Chọn mệnh đề đúng :
    • Đặt \(I = \int\limits_1^e {\ln x\,dx} \). Lựa chọn phương án đúng :
    • Cho f(x) là hàm liên tục trên (a ; b) và không phải là hàm hằng. Giả sử F(x) là một nguyên hàm của f(x). Lựa chọn phương án đúng:
    • Tính nguyên hàm \(\int {{{\left( {{e^3}} \right)}^{\cos x}}\sin x\,dx} \) ta được:
    • Tính nguyên hàm \(\int {\dfrac{{2{x^2} – 7x + 7}}{{x – 2}}\,dx} \) ta được:
    • Tính nguyên hàm \(\int {{3^{{x^2}}}x\,dx} \) ta được:
    • Tính tích phân \(I = \int\limits_0^{\dfrac{\pi }{2}} {x.\cos \left( {a – x} \right)\,dx} \).
    • Diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng x = – 1 , x = – 2 .
    • Tìm hàm số F(x) biết rằng và đồ thị của hàm số F(x) đi qua điểm .
    • Xét hàm số f(x) có . Với a, b là các số thực và , khẳng định nào sau đây luôn đúng ?
    • Biến đổi thành Khi đó f(t) là hàm nào trong các hàm số sau ?
    • Cho hàm số f liên tục trên đoạn [0 ; 6]. Nếu \(\int\limits_1^5 {f(x)\,dx = 2\,,\,\,\int\limits_1^3 {f(x)\,dx = 7} } \) thì \(\int\limits_3^5 {f(x)\,dx} \) có giá trị bằng bao nhiêu ?
    • Cho tích phân , nếu đặt thì:
    • Biết . Phát biểu nào sau đây nhân giá trị đúng ?
    • Tìm nguyên hàm của hàm số \(f(x) = {2^{2x}}{.3^x}{.7^x}\).
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2021 - Học toán và Trắc nghiệm Toán online.