Câu hỏi:
Cho điểm \(I\left( {1;1; – 2} \right)\) đường thẳng \(d:\dfrac{{x + 1}}{1} = \dfrac{{y – 3}}{2} = \dfrac{{z – 2}}{1}\). Phương trình mặt cầu \(\left( S \right)\)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho \(\widehat {IAB} = {30^o}\) là:
-
A.
\({\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 72.\) -
B.
\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 36.\) -
C.
\({\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 66.\) -
D.
\({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z – 2} \right)^2} = 46.\)
Lời giải tham khảo:
Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
Đề thi Giữa HK2 năm 2021 môn Toán lớp 12
Đáp án đúng: A
Đường thẳng \(d\) đi qua \(M\left( { – 1;{\rm{ 3}};2} \right)\)và có vectơ chỉ phương \(\overrightarrow u = \left( {1;\,2;\,1} \right)\).
Gọi H là hình chiếu của I trên D. Ta có: \(IH = d\left( {I;AB} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {MI} } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \sqrt {18} \).
\( \Rightarrow R = IA = 2\sqrt {18} \).
Vậy phương trình mặt cầu là: \({\left( {x – 1} \right)^2} + {\left( {y – 1} \right)^2} + {\left( {z + 2} \right)^2} = 72.\)