• Toán 12
  • Toán 11
  • Toán 10
  • Đề thi Toán
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
  • Menu
  • Bỏ qua primary navigation
  • Skip to secondary navigation
  • Skip to main content
  • Bỏ qua primary sidebar

Học Môn Toán

Học toán trực tuyến, trắc nghiệm môn toán tiểu học, trung học cơ sở và trung học phổ thông

Header Right

  • Toán 12
  • Toán 11
  • Toán 10
  • Đề thi Toán
  • Toán 9
  • Toán 8
  • Toán 7
  • Toán 6
Bạn đang ở:Trang chủ / Đề thi giữa HK2 môn Toán 11 / Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến \(\Delta\). Lấy A, B cùng thuộc \(\Delta\) và lấy C trên (P), D trên (Q) sao cho \(AC \bot AB,BD \bot AB\) và AB = AC = BD. Thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng \((\alpha)\) đi qua A và vuông góc với CD là hình gì?

Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến \(\Delta\). Lấy A, B cùng thuộc \(\Delta\) và lấy C trên (P), D trên (Q) sao cho \(AC \bot AB,BD \bot AB\) và AB = AC = BD. Thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng \((\alpha)\) đi qua A và vuông góc với CD là hình gì?

07/04/2021 //  by admin




  • Câu hỏi:

    Cho hai mặt phẳng vuông góc (P) và (Q) có giao tuyến \(\Delta\). Lấy A, B cùng thuộc \(\Delta\) và lấy C trên (P), D trên (Q) sao cho \(AC \bot AB,BD \bot AB\) và AB = AC = BD. Thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng \((\alpha)\) đi qua A và vuông góc với CD là hình gì?


    • A.
      Tam giác cân.

    • B.
      Hình vuông

    • C.
      Tam giác đều

    • D.
      Tam giác vuông
     

    Lời giải tham khảo:

    Hãy chọn trả lời đúng trước khi xem đáp án và lời giải bên dưới.
    Đề thi thử GIỮA HỌC KỲ 2 năm 2021 môn Toán lớp 11
    Đáp án đúng: D

    Gọi I là trung điểm của BC. Vì tam giác ABC vuông cân tại A nên \(AI \bot BC\).

    Ta có \(\left. \begin{array}{l} \left( P \right) \bot \left( Q \right)\\ \left( P \right) \cap \left( Q \right) = d\\ \left( Q \right) \supset BD \bot d \end{array} \right\} \Rightarrow BD \bot \left( P \right) \Rightarrow BD \bot AI\).

    \(\left. \begin{array}{l} AI \bot BC\\ AI \bot BD \end{array} \right\} \Rightarrow AI \bot \left( {BCD} \right) \Rightarrow AI \bot CD\).

    Trong (ACD), dựng đường thẳng đi qua A và vuông góc với CD cắt CD tại H.

    Thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng \((\alpha)\) là tam giác AHI.

    Vì \(AI \bot \left( {BCD} \right) \Rightarrow AI \bot HI\) nên tam giác AHI là tam giác vuông tại I.

    Montoan.com xin giới thiệu Bộ đề thi GIỮA HỌC KỲ 2 môn Toán 11 năm 2021, bộ đề thi được tổng hợp từ nhiều trường khác nhau sẽ giúp cho các em củng cố kiến thức thức đã học một cách có hệ thống, đồng thời rèn luyện kỹ năng giải đề để từ đó đạt điểm số thật cao trong kì thi sắp đến.
    Để có thêm nguồn tư liệu phong phú trong quá trình ôn luyện cho kì thi GIỮA HỌC KỲ 2 – 2021 sắp tới, xin chia sẻ đến các em Bộ đề thi thử GIỮA HỌC KỲ 2 Toán năm 2021. Đề có đáp án chi tiết giúp các em đối chiếu, tham khảo để đánh giá năng lực bản thân nhằm có kế hoạch ôn luyện tốt hơn.
    Chúc các em thành công và đạt kết quả cao trong bài thi!

    YOMEDIA




  • Bài liên quan:

    1. Hình hộp ABCDABCD trở thành hình lăng trụ tứ giác đều khi phải thêm các điều kiện nào sau đây?
    2. Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a, góc giữa hai mặt phẳng (ABCD) và (ABC’) có số đo bằng 60o. Cạnh bên của hình lăng trụ bằng:
    3. Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và \(AC = AD = BC = BD = a;CD = 2x\). Với giá trị nào của x thì hai mặt phẳng
    4. Chỉ ra mệnh đề sai trong các mệnh đề sau:
    5. Cho hình chóp \(S \cdot A B C \text { có } S A=S B=S C\) và tam giác ABC vuông tại B . Vẽ \(S H \perp(A B C), H \in(A B C)\). Khẳng định nào sau đây đúng?
    6. Cho hình chóp S.ABC thỏa mãn \(S A=S B=S C\) . Tam giác ABC vuông tại A . Gọi H là hình chiếu vuông góc của S lên mp (ABC). Chọn khẳng định sai trong các khẳng định sau?
    7. Cho hình chóp S.ABC có \(S A \perp(A B C)\) và tam giác ABC không vuông, gọi H, K lần lượt là trực tâm các tam giác ABC và SBC . Các đường thẳng AH, SK, BC thỏa mãn:
    8. Cho hình chóp S.ABC có SA = SB = SC và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA}\). Hãy xác định góc giữa cặp vectơ \(\overrightarrow {SA} \) và \(\overrightarrow {BC} \) ?
    9. Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Khi đó \(\cos \left( {AB,DM} \right)\) bằng
    10. Cho tứ diện ABCD có AB vuông góc với CD, AB = CD = 6. M là điểm thuộc cạnh BC sao cho \(MC = x.BC{\rm{ }}\left( {0

    Chuyên mục: Đề thi giữa HK2 môn Toán 11Thẻ: Đề thi giữa HK2 môn Toán 11 năm 2021 - Trường THPT Thủ Đức

    Bài viết trước « Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và \(AC = AD = BC = BD = a;CD = 2x\). Với giá trị nào của x thì hai mặt phẳng
    Bài viết sau Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a, góc giữa hai mặt phẳng (ABCD) và (ABC’) có số đo bằng 60o. Cạnh bên của hình lăng trụ bằng: »

    Sidebar chính




    MỤC LỤC

    • Cho hình tứ diện ABCD có AB , BC, CD đôi một vuông góc . Điểm cách đều bốn điểm A, B, C, D là:
    • Mệnh đề nào sau đây s?
    • Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau. Khi đó góc giữa AB và CD bằng:
    • Cho hình chóp S. ABCD có đáy là tam giác đều cạnh a, \(SA \bot (ABC)\,,SA = \dfrac{a}{2}\). Góc giữa hai mặt phẳng (SAB) và (ABC) bằng:
    • Cho hình chóp tam giác đều S. ABC và đường cao SH, M là trung điểm của BC. \(SA \bot BC\) vì:
    • Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) cạnh a, góc nhọn bằng 600 và cạnh \(SC\) vuông góc với mặt phẳng \((ABCD)\) và \(SC =\dfrac{{a\sqrt 6 }}{3}\).Góc giữa hai mặt phẳng \((SBD)\) và \((SAC)\) bằng:
    • Giá trị của \(\lim \dfrac{{2 – n}}{{\sqrt {n + 1} }}\)
    • Nếu \(\left| q \right|
    • Giá trị của \(\lim \dfrac{{{{(n – 2)}^7}{{(2n + 1)}^3}}}{{{{({n^2} + 2)}^5}}}\)
    • Tính \(\lim \dfrac{{{3^n} – {{4.2}^{n – 1}} – 3}}{{{{3.2}^n} + {4^n}}}\)
    • Tính \(\mathop {\lim }\limits_{x \to – 1} ({x^2} – x + 7)\) bằng
    • Cho \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L,\mathop {\lim }\limits_{x \to x{}_0} g(x) = M\). Chọn mệnh đề sai:
    • Giá trị của \(\lim (\sqrt {{n^2} + n + 1} – n)\) bằng
    • Tìm \(\lim {u_n}\)biết \({u_n} = \dfrac{{n.\sqrt {1 + 3 + 5 + … + (2n – 1)} }}{{2{n^2} + 1}}\)
    • Tính \(\mathop {\lim }\limits_{x \to 2} ({x^3} + 1)\)
    • Tính \(\mathop {\lim }\limits_{x \to {{( – 1)}^ – }} \dfrac{{{x^2} + 3x + 2}}{{\left| {x + 1} \right|}}\)
    • Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{x – 8}}{{\sqrt[3]{x} – 2}}\,\,\,\,\,khi\,\,\,x > 8\\ax + 4\,\,\,\,\,\,\,\,\,khi\,\,x \le 8\end{array} \right.\) . Để hàm số liên tục tại x = 8, giá trị của a là:
    • Chọn giá trị của \(f(0)\)để hàm số \(f(x) = \dfrac{{\sqrt[3]{{2x + 8}} – 2}}{{\sqrt {3x + 4} – 2}}\)liên tục tại điểm x = 0
    • Tìm a để hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\dfrac{{\sqrt {3x + 1} – 2}}{{{x^2} – 1}},\,x > 1}\\{\dfrac{{a({x^2} – 2)}}{{x – 3}},\,x \le 1}\end{array}} \right.\) liên tục tại x = 1
    • Chọn mệnh đề đúng:
    • Giới thiệu
    • Bản quyền
    • Sitemap
    • Liên hệ
    • Bảo mật

    Môn Toán 2021 - Học toán và Trắc nghiệm Toán online.